基于BMI和肺通气参数,利用机器学习检测正常、超重和肥胖个体中与扩散异常相关的呼吸变化:一项观察性研究。

Machine learning for detection of diffusion abnormalities-related respiratory changes among normal, overweight, and obese individuals based on BMI and pulmonary ventilation parameters: an observational study.

作者信息

Song Xin-Yue, Xie Xin-Peng, Xu Wen-Jing, Cao Yu-Jia, Liang Bin-Miao

机构信息

Department of Respiratory and Critical Care Medicine, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.

College of Electrical Engineering and Automation, Sichuan University, Chengdu, 610065, China.

出版信息

BMC Med Inform Decis Mak. 2025 Jul 1;25(1):240. doi: 10.1186/s12911-025-03064-x.

Abstract

BACKGROUND

The integration of machine learning (ML) algorithms enables the detection of diffusion abnormalities-related respiratory changes in individuals with normal body mass index (BMI), overweight, and obesity based on BMI and pulmonary ventilation parameters. We evaluated the effectiveness of various supervised ML algorithms and identified the optimal configurations for these applications.

METHODS

We conducted a retrospective analysis of data from 440 individuals who underwent pulmonary function tests between January 1, 2021, and April 1, 2024. This cohort consisted of 287 individuals with normal diffusion capacity (DN) and 153 with diffusion abnormalities (DA). We employed statistical comparisons (e.g., independent samples t-test and Chi-square test) to analyze demographic characteristics and spirometry results. Piecewise regression evaluated the correlation between BMI and carbon monoxide diffusing capacity (DL). Pulmonary ventilation parameters included forced vital capacity (FVC), forced expiratory volume in one second (FEV), FEV/FVC, peak expiratory flow (PEF), maximum mid-expiratory flow (MMEF) and vital capacity (VC). We applied several supervised ML algorithms and feature selection strategies to distinguish between DN and DA, including Support Vector Machine (SVM), Random Forest (RF), Adaptive Boosting (AdaBoost), Naive Bayes (BAYES), K-Nearest Neighbors (KNN), SelectKBest, Recursive Feature Elimination with Cross-Validation (RFECV), and SelectFromModel. Additionally, we performed feature importance analysis using shapley additive explanations (SHAP) and permutation importance to evaluate the contribution of individual parameters to the classification process.

RESULTS

Our findings revealed that individuals in the DA group demonstrated lower PEF and DL than their DN counterparts. BMI displayed a cubic relationship with DL for 18.5 kg/m² < BMI < 40 kg/m² (R² = 0.498, P < 0.01), and a linear negative correlation for BMI ≥ 40 kg/m² (r = -0.253, P < 0.05). Notably, the RF algorithm emerged as the most effective diagnostic tool for distinguishing between DN and DA, achieving an area under the curve (AUC) of 0.983, considerably outpacing other algorithms like BAYES, SVM, AdaBoost, and KNN (P < 0.01). Applying various feature selection strategies identified optimal parameters (BMI, FEV/FVC, and VC) in subsequent experiments, which aligned with the results from feature importance analysis and pulmonary physiology. While feature selection enhanced KNN's diagnostic accuracy, it had a minimal impact on BAYES's performance.

CONCLUSION

The results indicate that for individuals with a BMI between 18.5 kg/m² and 40 kg/m², diffusion capacity improves with increasing BMI. Conversely, diffusion capacity decreases for those with a BMI of 40 kg/m² or higher. This study underscores the potential of combining BMI and pulmonary ventilation parameters with ML algorithms as a practical approach to diagnosing diffusion abnormalities across normal-weight, overweight, and obese categories, particularly in contexts utilizing portable spirometers.

TRIAL REGISTRATION

Not applicable.

摘要

背景

机器学习(ML)算法的整合能够基于体重指数(BMI)和肺通气参数,在体重指数正常、超重和肥胖的个体中检测与弥散异常相关的呼吸变化。我们评估了各种监督式ML算法的有效性,并确定了这些应用的最佳配置。

方法

我们对2021年1月1日至2024年4月1日期间接受肺功能测试的440名个体的数据进行了回顾性分析。该队列包括287名弥散能力正常(DN)的个体和153名有弥散异常(DA)的个体。我们采用统计比较(如独立样本t检验和卡方检验)来分析人口统计学特征和肺量计结果。分段回归评估BMI与一氧化碳弥散量(DL)之间的相关性。肺通气参数包括用力肺活量(FVC)、一秒用力呼气量(FEV)、FEV/FVC、呼气峰值流速(PEF)、最大呼气中期流速(MMEF)和肺活量(VC)。我们应用了几种监督式ML算法和特征选择策略来区分DN和DA,包括支持向量机(SVM)、随机森林(RF)、自适应增强(AdaBoost)、朴素贝叶斯(BAYES)、K近邻(KNN)、SelectKBest、带交叉验证的递归特征消除(RFECV)和基于模型选择。此外,我们使用夏普利加法解释(SHAP)和排列重要性进行特征重要性分析,以评估各个参数对分类过程的贡献。

结果

我们的研究结果显示,DA组个体的PEF和DL低于DN组个体。对于18.5kg/m² < BMI < 40kg/m²,BMI与DL呈三次方关系(R² = 0.498,P < 0.01),而对于BMI≥40kg/m²,呈线性负相关(r = -0.253,P < 0.05)。值得注意的是,RF算法成为区分DN和DA最有效的诊断工具,曲线下面积(AUC)为0.983,大大超过了BAYES、SVM、AdaBoost和KNN等其他算法(P < 0.01)。应用各种特征选择策略在后续实验中确定了最佳参数(BMI、FEV/FVC和VC),这与特征重要性分析和肺生理学结果一致。虽然特征选择提高了KNN的诊断准确性,但对BAYES的性能影响最小。

结论

结果表明,对于BMI在18.5kg/m²至40kg/m²之间的个体,弥散能力随BMI升高而改善。相反,BMI为40kg/m²或更高的个体,弥散能力下降。本研究强调了将BMI和肺通气参数与ML算法相结合作为一种实用方法来诊断正常体重、超重和肥胖类别中的弥散异常的潜力,特别是在使用便携式肺量计的情况下。

试验注册

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbf3/12220551/7e75838e39a3/12911_2025_3064_Fig1_HTML.jpg

相似文献

[4]
Weight loss interventions for chronic asthma.

Cochrane Database Syst Rev. 2012-7-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索