Suppr超能文献

基于深度学习的呼吸音分析用于慢性阻塞性肺疾病的检测

Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease.

作者信息

Srivastava Arpan, Jain Sonakshi, Miranda Ryan, Patil Shruti, Pandya Sharnil, Kotecha Ketan

机构信息

CS&IT Dept, Symbiosis Insitute of Technology, Symbiosis International (Deemed University), Pune, Maharastra, India.

Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Pune, Maharastra, India.

出版信息

PeerJ Comput Sci. 2021 Feb 11;7:e369. doi: 10.7717/peerj-cs.369. eCollection 2021.

Abstract

In recent times, technologies such as machine learning and deep learning have played a vital role in providing assistive solutions to a medical domain's challenges. They also improve predictive accuracy for early and timely disease detection using medical imaging and audio analysis. Due to the scarcity of trained human resources, medical practitioners are welcoming such technology assistance as it provides a helping hand to them in coping with more patients. Apart from critical health diseases such as cancer and diabetes, the impact of respiratory diseases is also gradually on the rise and is becoming life-threatening for society. The early diagnosis and immediate treatment are crucial in respiratory diseases, and hence the audio of the respiratory sounds is proving very beneficial along with chest X-rays. The presented research work aims to apply Convolutional Neural Network based deep learning methodologies to assist medical experts by providing a detailed and rigorous analysis of the medical respiratory audio data for Chronic Obstructive Pulmonary detection. In the conducted experiments, we have used a Librosa machine learning library features such as MFCC, Mel-Spectrogram, Chroma, Chroma (Constant-Q) and Chroma CENS. The presented system could also interpret the severity of the disease identified, such as mild, moderate, or acute. The investigation results validate the success of the proposed deep learning approach. The system classification accuracy has been enhanced to an ICBHI score of 93%. Furthermore, in the conducted experiments, we have applied K-fold Cross-Validation with ten splits to optimize the performance of the presented deep learning approach.

摘要

近年来,机器学习和深度学习等技术在为医疗领域的挑战提供辅助解决方案方面发挥了至关重要的作用。它们还提高了使用医学成像和音频分析进行早期和及时疾病检测的预测准确性。由于训练有素的人力资源稀缺,医学从业者欢迎这种技术援助,因为它在应对更多患者方面为他们提供了帮助。除了癌症和糖尿病等重大健康疾病外,呼吸系统疾病的影响也在逐渐上升,对社会构成生命威胁。呼吸系统疾病的早期诊断和及时治疗至关重要,因此呼吸音音频与胸部X光片一起被证明非常有益。本研究工作旨在应用基于卷积神经网络的深度学习方法,通过对慢性阻塞性肺疾病检测的医学呼吸音频数据进行详细而严谨的分析,为医学专家提供帮助。在进行的实验中,我们使用了Librosa机器学习库的特征,如MFCC、梅尔频谱图、色度、色度(恒定Q)和色度CENS。所提出的系统还可以解释所识别疾病的严重程度,如轻度、中度或急性。研究结果验证了所提出的深度学习方法的成功。系统分类准确率已提高到ICBHI分数的93%。此外,在进行的实验中,我们应用了十折交叉验证来优化所提出的深度学习方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a86a/7959628/29b2046ae7e4/peerj-cs-07-369-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验