Suppr超能文献

新型大豆蛋白支架材料用于组织再生:材料特性分析及其与人骨髓间充质干细胞的相互作用。

Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

机构信息

Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

出版信息

Acta Biomater. 2012 Feb;8(2):694-703. doi: 10.1016/j.actbio.2011.09.036. Epub 2011 Oct 11.

Abstract

Soy protein modified with heat treatment and enzyme crosslinking using transglutaminase in maltodextrin was used to fabricate novel, porous three-dimensional scaffolds through lyophilization. Physical properties of scaffolds were characterized using scanning electron microscopy, mercury intrusion porosimetry, moisture content analysis and mechanical testing. Human mesenchymal stem cells (hMSC) were seeded and cultured in vitro on the scaffolds for up to 2 weeks, and changes in stem cell growth and morphology were examined. The resulting scaffolds had rough surfaces, irregular pores with size distributions between 10 and 125 μm, <5% moisture content and compressive moduli ranging between 50 and 100 Pa. Enzyme treatment significantly lowered the moisture content. Increasing amounts of applied enzyme units lowered the median pore size. Although enzyme treatment did not affect the mechanical properties of the scaffolds, it did increase the degradation time by at least 1 week. These changes in scaffold degradation altered the growth and morphology of seeded hMSC. Cell proliferation was observed in scaffolds containing 3% soy protein isolate treated with 1 U of transglutaminase. These results demonstrate that controlling scaffold degradation rates is crucial for optimizing hMSC growth on soy protein scaffolds and that soy protein scaffolds have the potential to be used in tissue engineering applications.

摘要

采用热处理和转谷氨酰胺酶交联的方法对大豆蛋白进行修饰,并利用麦芽糊精来制备新型的、具有多孔三维结构的支架,采用冷冻干燥法制备。通过扫描电子显微镜、压汞孔隙率分析、水分含量分析和力学测试来对支架的物理性能进行了表征。将人骨髓间充质干细胞(hMSC)接种并在支架上进行体外培养,时间长达 2 周,检测干细胞生长和形态的变化。所得支架表面粗糙,孔径分布不规则,大小在 10 到 125μm 之间,水分含量<5%,压缩模量在 50 到 100Pa 之间。酶处理显著降低了水分含量。增加应用的酶单位数降低了中值孔径。尽管酶处理没有影响支架的力学性能,但它确实将降解时间至少延长了 1 周。支架降解的这些变化改变了接种的 hMSC 的生长和形态。在含有 3%大豆分离蛋白并经 1U 转谷氨酰胺酶处理的支架中观察到细胞增殖。这些结果表明,控制支架降解速率对于优化 hMSC 在大豆蛋白支架上的生长至关重要,并且大豆蛋白支架具有在组织工程应用中使用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验