Suppr超能文献

用于预测蛋白质-RNA 相互作用的计算方法。

Computational methods for prediction of protein-RNA interactions.

机构信息

Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, PL-61-614 Poznan, Poland.

出版信息

J Struct Biol. 2012 Sep;179(3):261-8. doi: 10.1016/j.jsb.2011.10.001. Epub 2011 Oct 12.

Abstract

Understanding the molecular mechanism of protein-RNA recognition and complex formation is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) is tedious and difficult. Alternatively, protein-RNA interactions can be predicted by computational methods. Although less accurate than experimental observations, computational predictions can be sufficiently accurate to prompt functional hypotheses and guide experiments, e.g. to identify individual amino acid or nucleotide residues. In this article we review 10 methods for predicting protein-RNA interactions, seven of which predict RNA-binding sites from protein sequences and three from structures. We also developed a meta-predictor that uses the output of top three sequence-based primary predictors to calculate a consensus prediction, which outperforms all the primary predictors. In order to fully cover the software for predicting protein-RNA interactions, we also describe five methods for protein-RNA docking. The article highlights the strengths and shortcomings of existing methods for the prediction of protein-RNA interactions and provides suggestions for their further development.

摘要

理解蛋白质-RNA 识别和复合物形成的分子机制是结构生物学的主要挑战。不幸的是,通过 X 射线晶体学和核磁共振波谱学(NMR)实验确定蛋白质-RNA 复合物既繁琐又困难。或者,可以通过计算方法预测蛋白质-RNA 相互作用。尽管不如实验观察准确,但计算预测可以足够准确地提示功能假设并指导实验,例如确定个别氨基酸或核苷酸残基。在本文中,我们综述了 10 种预测蛋白质-RNA 相互作用的方法,其中 7 种方法从蛋白质序列预测 RNA 结合位点,3 种方法从结构预测 RNA 结合位点。我们还开发了一种元预测器,它使用前三个基于序列的主要预测器的输出来计算共识预测,该预测器优于所有主要预测器。为了全面涵盖预测蛋白质-RNA 相互作用的软件,我们还描述了 5 种蛋白质-RNA 对接方法。本文强调了现有蛋白质-RNA 相互作用预测方法的优缺点,并为其进一步发展提出了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验