NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
Nanotechnology. 2011 Nov 11;22(45):455202. doi: 10.1088/0957-4484/22/45/455202. Epub 2011 Oct 21.
A simple, reliable, and large scale ambient environment doping method for carbon nanotubes is a highly desirable approach for modulating the performance of nanotube based electronics. One of the major challenges is doping carbon nanotubes to simultaneously offer a large shift in threshold voltage and an improved subthreshold swing. In this paper, we report on modulating the performance of carbon nanotube field-effect transistors (CNTFETs) by rationally selecting doping molecules. We demonstrated that Rose Bengal sodium salt (RB-Na) molecular doping can effectively shift the threshold voltage (ΔVth) of CNTFETs up to ∼6 V, decrease the subthreshold swing down to 130 mV/decade, and increase the effective field-effect mobility to 5 cm2 V(-1) s(-1). It is also shown that CNTFETs doped with Rose Bengal lactone (RBL) show a smaller variation in ΔVth (∼2 V) and subthreshold swing than those doped by RB-Na, which can be attributed to the difference in their molecular structures. The observed right-shift of the threshold voltage is attributed to the positive charge doping of the nanotube conduction channel from Rose Bengal molecules. The resultant lowering of the subthreshold swing is due to the reduced Schottky barrier at the CNT/metal/molecule interface. This room temperature chemical doping approach provides an efficient, simple, and cost-effective method to fabricate highly reliable and high-performance nanotube transistors for future nanotube based electronics.
一种简单、可靠且大规模的碳纳米管环境掺杂方法是调节基于纳米管的电子器件性能的理想方法。主要挑战之一是掺杂碳纳米管,以同时提供阈值电压的大幅偏移和亚阈值摆幅的改善。在本文中,我们报告了通过合理选择掺杂分子来调节碳纳米管场效应晶体管 (CNTFET) 的性能。我们证明了 Rose Bengal 钠盐 (RB-Na) 分子掺杂可以有效地将 CNTFET 的阈值电压 (ΔVth) 偏移高达约 6V,将亚阈值摆幅降低至 130mV/decade,并将有效场效应迁移率提高至 5cm2V(-1)s(-1)。还表明,用 Rose Bengal lactone (RBL) 掺杂的 CNTFET 的 ΔVth (∼2V) 和亚阈值摆幅变化小于用 RB-Na 掺杂的 CNTFET,这可归因于它们的分子结构的差异。观察到的阈值电压右移归因于 Rose Bengal 分子对纳米管导电路径的正电荷掺杂。亚阈值摆幅降低是由于 CNT/金属/分子界面处的肖特基势垒降低。这种室温化学掺杂方法为制造基于未来纳米管的电子器件的高可靠性和高性能纳米管晶体管提供了一种有效、简单且具有成本效益的方法。