Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nano Lett. 2011 Dec 14;11(12):5316-21. doi: 10.1021/nl202796u. Epub 2011 Oct 28.
We demonstrate single-walled carbon nanotube (SWCNT)/P3HT polymer bulk heterojunction solar cells with an AM1.5 efficiency of 0.72%, significantly higher than previously reported (0.05%). A key step in achieving high efficiency is the utilization of semiconducting SWCNTs coated with an ordered P3HT layer to enhance the charge separation and transport in the device active layer. Electrical characteristics of devices with SWCNT concentrations up to 40 wt % were measured and are shown to be strongly dependent on the SWCNT loading. A maximum open circuit voltage was measured for SWCNT concentration of 3 wt % with a value of 1.04 V, higher than expected based on the interface band alignment. Modeling of the open-circuit voltage suggests that despite the large carrier mobility in SWCNTs device power conversion efficiency is governed by carrier recombination. Optical characterization shows that only SWCNT with diameter of 1.3-1.4 nm can contribute to the photocurrent with internal quantum efficiency up to 26%. Our results advance the fundamental understanding and improve the design of efficient polymer/SWCNTs solar cells.
我们展示了单壁碳纳米管(SWCNT)/P3HT 聚合物体异质结太阳能电池,其 AM1.5 效率为 0.72%,明显高于之前的报道(0.05%)。实现高效率的关键步骤是利用包覆有序 P3HT 层的半导体 SWCNT 来增强器件活性层中的电荷分离和传输。测量了 SWCNT 浓度高达 40wt%的器件的电特性,结果表明其强烈依赖于 SWCNT 的负载。对于 SWCNT 浓度为 3wt%的器件,测量到了最大开路电压为 1.04V,高于根据界面能带排列预期的值。开路电压的建模表明,尽管 SWCNT 中的载流子迁移率很大,但器件的功率转换效率受载流子复合的控制。光学特性表明,只有直径为 1.3-1.4nm 的 SWCNT 才能对光电流做出贡献,内量子效率高达 26%。我们的结果推进了对高效聚合物/SWCNT 太阳能电池的基本理解并改善了其设计。