Westfall Peter H
Department of ISQS, Texas Tech University, Lubbock, Texas 79409-2101, USA.
J Biopharm Stat. 2011 Nov;21(6):1187-205. doi: 10.1080/10543406.2011.607751.
There are many ways to bootstrap data for multiple comparisons procedures. Methods described here include (i) bootstrap (parametric and nonparametric) as a generalization of classical normal-based MaxT methods, (ii) bootstrap as an approximation to exact permutation methods, (iii) bootstrap as a generator of realistic null data sets, and (iv) bootstrap as a generator of realistic non-null data sets. Resampling of MinP versus MaxT is discussed, and the use of the bootstrap for closed testing is also presented. Applications to biopharmaceutical statistics are given.
对于多重比较程序,有多种用于自抽样数据的方法。这里描述的方法包括:(i) 作为基于经典正态的MaxT方法推广的自抽样(参数化和非参数化);(ii) 作为精确置换方法近似的自抽样;(iii) 作为现实零假设数据集生成器的自抽样;以及(iv) 作为现实非零假设数据集生成器的自抽样。讨论了MinP与MaxT的重抽样,并介绍了自抽样在封闭检验中的应用。还给出了在生物制药统计学中的应用。