Suppr超能文献

表观纤维密度:一种用于分析扩散加权磁共振图像的新方法。

Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images.

机构信息

CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.

出版信息

Neuroimage. 2012 Feb 15;59(4):3976-94. doi: 10.1016/j.neuroimage.2011.10.045. Epub 2011 Oct 20.

Abstract

This article proposes a new measure called Apparent Fibre Density (AFD) for the analysis of high angular resolution diffusion-weighted images using higher-order information provided by fibre orientation distributions (FODs) computed using spherical deconvolution. AFD has the potential to provide specific information regarding differences between populations by identifying not only the location, but also the orientations along which differences exist. In this work, analytical and numerical Monte-Carlo simulations are used to support the use of the FOD amplitude as a quantitative measure (i.e. AFD) for population and longitudinal analysis. To perform robust voxel-based analysis of AFD, we present and evaluate a novel method to modulate the FOD to account for changes in fibre bundle cross-sectional area that occur during spatial normalisation. We then describe a novel approach for statistical analysis of AFD that uses cluster-based inference of differences extended throughout space and orientation. Finally, we demonstrate the capability of the proposed method by performing voxel-based AFD comparisons between a group of Motor Neurone Disease patients and healthy control subjects. A significant decrease in AFD was detected along voxels and orientations corresponding to both the corticospinal tract and corpus callosal fibres that connect the primary motor cortices. In addition to corroborating previous findings in MND, this study demonstrates the clear advantage of using this type of analysis by identifying differences along single fibre bundles in regions containing multiple fibre populations.

摘要

本文提出了一种新的度量标准,称为表观纤维密度(AFD),用于分析使用基于球谐分解计算的纤维方向分布(FOD)提供的高阶信息的高角度分辨率扩散加权图像。AFD 有可能通过不仅识别位置,而且识别存在差异的方向,提供有关群体之间差异的具体信息。在这项工作中,使用分析和数值蒙特卡罗模拟来支持将 FOD 幅度用作群体和纵向分析的定量度量(即 AFD)。为了对 AFD 进行稳健的体素基分析,我们提出并评估了一种新方法,该方法调制 FOD 以考虑在空间归一化过程中纤维束横截面积发生的变化。然后,我们描述了一种新颖的 AFD 统计分析方法,该方法使用基于聚类的推断来扩展整个空间和方向的差异。最后,我们通过在运动神经元疾病患者组和健康对照组之间进行基于体素的 AFD 比较,展示了所提出方法的能力。在与皮质脊髓束和胼胝体纤维对应的体素和方向上,检测到 AFD 沿纤维束的显著降低,这些纤维束连接着主要运动皮质。除了证实 MND 中的先前发现外,本研究还通过在包含多个纤维群体的区域中沿单个纤维束识别差异,展示了使用这种类型分析的明显优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验