Suppr超能文献

β2-肾上腺素能受体中 G 蛋白和可扩散配体作用的分子动力学模拟

Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.

机构信息

Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany.

出版信息

J Mol Biol. 2011 Dec 9;414(4):611-23. doi: 10.1016/j.jmb.2011.10.015. Epub 2011 Oct 20.

Abstract

G-protein-coupled receptors have extraordinary therapeutic potential as targets for a broad spectrum of diseases. Understanding their function at the molecular level is therefore essential. A variety of crystal structures have made the investigation of the inactive receptor state possible. Recently released X-ray structures of opsin and the β(2)-adrenergic receptor (β(2)AR) have provided insight into the active receptor state. In addition, we have contributed to the crystal structure of an irreversible agonist-β(2) adrenoceptor complex. These extensive studies and biophysical investigations have revealed that agonist binding leads to a low-affinity conformation of the active state that is suggested to facilitate G-protein binding. The high-affinity receptor state, which promotes signal transduction, is only formed in the presence of both agonist and G-protein. Despite numerous crystal structures, it is not yet clear how ligands tune receptor dynamics and G-protein binding. We have now used molecular dynamics simulations to elucidate the distinct impact of agonist and inverse agonist on receptor conformation and G-protein binding by investigating the influence of the ligands on the structure and dynamics of a complex composed of β(2)AR and the C-terminal end of the Gα(s) subunit (GαCT). The simulations clearly showed that the agonist isoprenaline and the inverse agonist carazolol influence the ligand-binding site and the interaction between β(2)AR and GαCT differently. Isoprenaline induced an inward motion of helix 5, whereas carazolol blocked the rearrangement of the extracellular part of the receptor. Moreover, in the presence of isoprenaline, β(2)AR and GαCT form a stable interaction that is destabilized by carazolol.

摘要

G 蛋白偶联受体作为治疗多种疾病靶点具有巨大的潜力。因此,了解其在分子水平上的功能至关重要。多种晶体结构的解析使得研究非活性受体状态成为可能。最近发布的视蛋白和β(2)-肾上腺素能受体(β(2)AR)的 X 射线结构提供了对活性受体状态的深入了解。此外,我们还对不可逆激动剂-β(2)肾上腺素能受体复合物的晶体结构进行了研究。这些广泛的研究和生物物理研究表明,激动剂结合导致活性状态的低亲和力构象,该构象被认为有利于 G 蛋白结合。促进信号转导的高亲和力受体状态仅在存在激动剂和 G 蛋白的情况下形成。尽管有许多晶体结构,但目前尚不清楚配体如何调节受体动力学和 G 蛋白结合。我们现在使用分子动力学模拟来阐明激动剂和反向激动剂对受体构象和 G 蛋白结合的不同影响,通过研究配体对由β(2)AR 和 Gα(s)亚基 C 末端(GαCT)组成的复合物的结构和动力学的影响来研究。模拟结果清楚地表明,激动剂异丙肾上腺素和反向激动剂卡他林以不同的方式影响配体结合位点和β(2)AR 与 GαCT 之间的相互作用。异丙肾上腺素诱导螺旋 5 的内移,而卡他林阻止受体细胞外部分的重排。此外,在异丙肾上腺素存在下,β(2)AR 和 GαCT 形成稳定的相互作用,而卡他林使其不稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验