Rowland Institute for Science at Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA.
Lab Chip. 2012 Jan 21;12(2):268-73. doi: 10.1039/c1lc20843h. Epub 2011 Oct 31.
The combination of microscopy and flow cytometry enables image based screening of large collections of cells. Despite the proposition more than thirty years ago, adding high resolution wide-field imaging to flow cytometers remains challenging. The velocity of cells in flow cytometry can surpass a meter per second, requiring either sub-microsecond exposure times or other sophisticated photodetection techniques. Instead of faster detectors and brighter sources, we demonstrate that by imaging multiple channels simultaneously, a high throughput can be maintained with a flow velocity reduced in proportion to the degree of parallelization. The multi-field of view imaging flow cytometer (MIFC) is implemented with parallel arrays of microfluidic channels and diffractive lenses that produce sixteen wide field images with a magnification of 45 and submicron resolution. Using this device, we have imaged latex beads, red blood cells, and acute myeloid leukemia cells at rates of 2,000-20,000 per second.
显微镜和流式细胞术的结合使基于图像的大细胞群筛选成为可能。尽管三十多年前就提出了这一观点,但将高分辨率宽场成像添加到流式细胞仪中仍然具有挑战性。流式细胞术中的细胞速度可以超过每秒一米,这需要亚微秒的曝光时间或其他复杂的光电检测技术。我们没有采用更快的探测器和更亮的光源,而是证明通过同时对多个通道进行成像,可以在与并行化程度成比例地降低流速的情况下保持高通量。多视场成像流式细胞仪(MIFC)采用微流控通道的平行阵列和衍射透镜实现,可产生 16 个放大倍数为 45 倍且具有亚微米分辨率的宽场图像。使用该设备,我们以每秒 2,000-20,000 个的速度对乳胶珠、红细胞和急性髓系白血病细胞进行了成像。