Madden M S, Kindon N D, Ludden P W, Shah V K
Department of Biochemistry, University of Wisconsin-Madison 53706.
Proc Natl Acad Sci U S A. 1990 Sep;87(17):6517-21. doi: 10.1073/pnas.87.17.6517.
In vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase using homocitrate and its analogs allows the formation of modified forms of FeMo-co that show altered substrate specificities (N2, acetylene, cyanide, or proton reduction) of nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC 1.18.6.1]. The (1R,2S)-threo- and (1S,2S)-erythro-fluorinated diastereomers of homocitrate have been incorporated in vitro into dinitrogenase in place of homocitrate. Dinitrogenase activated with FeMo-co synthesized using threo-fluorohomocitrate reduces protons, cyanide, and acetylene but cannot reduce N2. In addition, proton reduction is inhibited by carbon monoxide (CO), a characteristic of dinitrogenase from NifV- mutants. Dinitrogenase activated with FeMo-co synthesized using erythro-fluorohomocitrate reduces protons, cyanide, acetylene, and N2. In this case proton reduction is not inhibited by CO, a characteristic of the wild-type enzyme. Cyanide reduction properties of dinitrogenase activated with FeMo-co containing either fluorohomocitrate diastereomer are similar, and CO strongly inhibits cyanide reduction. Dinitrogenases activated with FeMo-co containing homocitrate analogs with a hydroxyl group on the C-1 position are much less susceptible to CO inhibition of cyanide reduction. However, proton and cyanide reduction by dinitrogenase containing FeMo-co activated with (1R,2S) threo-isocitrate is only one-third that of dinitrogenase activated with the racemic mixture of -isocitrate and shows strong CO inhibition of substrate reduction. These results suggest that CO inhibition of proton and cyanide reduction occurs when the hydroxyl group on the C-1 position of analogs is "trans" to the C-2 carboxyl group (i.e., in the threo conformation). When racemic mixtures of these analogs are used in the system, it seems that the erythro form is preferentially incorporated into dinitrogenase. Finally, carbonyl sulfide inhibition of substrate reduction by dinitrogenase is dependent on the homocitrate analog incorporated into FeMo-co.
使用高柠檬酸及其类似物在体外合成固氮酶的铁钼辅因子(FeMo-co),可形成具有改变的底物特异性(N2、乙炔、氰化物或质子还原)的FeMo-co修饰形式,这种底物特异性是针对固氮酶[还原型铁氧还蛋白:双氮氧化还原酶(ATP水解),EC 1.18.6.1]而言的。高柠檬酸的(1R,2S)-苏式和(1S,2S)-赤式氟化非对映异构体已在体外被掺入固氮酶中以取代高柠檬酸。用苏式氟代高柠檬酸合成的FeMo-co激活的固氮酶可还原质子、氰化物和乙炔,但不能还原N2。此外,质子还原受到一氧化碳(CO)的抑制,这是来自NifV-突变体的固氮酶的一个特征。用赤式氟代高柠檬酸合成的FeMo-co激活的固氮酶可还原质子、氰化物、乙炔和N2。在这种情况下,质子还原不受CO抑制,这是野生型酶的一个特征。用含有任何一种氟代高柠檬酸非对映异构体的FeMo-co激活的固氮酶的氰化物还原特性相似,并且CO强烈抑制氰化物还原。用在C-1位带有羟基的高柠檬酸类似物的FeMo-co激活的固氮酶对CO抑制氰化物还原的敏感性要低得多。然而,用(1R,2S)苏式异柠檬酸激活的含有FeMo-co的固氮酶的质子和氰化物还原仅为用外消旋异柠檬酸混合物激活的固氮酶的三分之一,并且对底物还原表现出强烈的CO抑制。这些结果表明,当类似物C-1位的羟基与C-2羧基“反式”(即苏式构象)时,会发生CO对质子和氰化物还原的抑制。当在该系统中使用这些类似物的外消旋混合物时,似乎赤式形式优先掺入固氮酶中。最后,二硫化碳对固氮酶底物还原的抑制取决于掺入FeMo-co中的高柠檬酸类似物。