Industrial Materials Institute, National Research Council, Boucherville, QC, Canada.
Lab Chip. 2011 Dec 7;11(23):4099-107. doi: 10.1039/c1lc20714h. Epub 2011 Oct 31.
Microfluidics has emerged as a valuable tool for the high-resolution patterning of biological probes on solid supports. Yet, its widespread adoption as a universal biological immobilization tool is still limited by several technical challenges, particularly for the patterning of isolated spots using three-dimensional (3D) channel networks. A key limitation arises from the difficulties to adapt the techniques and materials typically used in prototyping to low-cost mass-production. In this paper, we present the fabrication of thin thermoplastic elastomer membranes with microscopic through-holes using a hot-embossing process that is compatible with high-throughput manufacturing. The membranes provide the basis for the fabrication of highly integrated 3D microfluidic devices with a footprint of only 1 × 1 cm(2). When placed on a solid support, the device allows for the immobilization of up to 96 different probes in the form of a 10 × 10 array comprising isolated spots of 50 × 50 μm(2). The design of the channel network is optimized using 3D simulations based on the Lattice-Boltzmann method to promote capillary action as the sole force distributing the liquid in the device. Finally, we demonstrate the patterning of DNA and protein arrays on hard thermoplastic substrates yielding spots of excellent definition that prove to be highly specific in subsequent hybridization experiments.
微流控技术已成为在固体载体上对生物探针进行高分辨率图案化的一种有效工具。然而,其作为通用生物固定工具的广泛应用仍然受到一些技术挑战的限制,特别是对于使用三维(3D)通道网络对孤立斑点进行图案化。一个关键的限制来自于将原型制作中常用的技术和材料适应于低成本大规模生产的困难。在本文中,我们介绍了使用热压印工艺制造具有微观通孔的薄热塑性弹性体膜的方法,该工艺与高通量制造兼容。该膜为制造占地面积仅为 1×1cm²的高度集成 3D 微流控器件提供了基础。当放置在固体载体上时,该器件允许以 10×10 阵列的形式固定多达 96 种不同的探针,其中包括 50×50μm²的孤立斑点。通道网络的设计使用基于格子玻尔兹曼方法的 3D 模拟进行优化,以促进毛细作用作为唯一的力来分配设备中的液体。最后,我们展示了在硬热塑性基底上对 DNA 和蛋白质阵列进行图案化的结果,得到了具有优异分辨率的斑点,在随后的杂交实验中证明了其高度特异性。