Suppr超能文献

小鼠全胚胎培养中的神经管闭合

Neural tube closure in mouse whole embryo culture.

作者信息

Gray Jason, Ross M Elizabeth

机构信息

Department of Neurology/Neuroscience, Weill Cornell Medical College.

出版信息

J Vis Exp. 2011 Oct 21(56):3132. doi: 10.3791/3132.

Abstract

Genetic mouse models are an important tool in the study of mammalian neural tube closure (Gray & Ross, 2009; Ross, 2010). However, the study of mouse embryos in utero is limited by our inability to directly pharmacologically manipulate the embryos in isolation from the effects of maternal metabolism on the reagent of interest. Whether using a small molecule, recombinant protein, or siRNA, delivery of these substances to the mother, through the diet or by injection will subject these unstable compounds to a variety of bodily defenses that could prevent them from reaching the embryo. Investigations in cultures of whole embryos can be used to separate maternal from intrinsic fetal effects on development. Here, we present a method for culturing mouse embryos using highly enriched media in a roller incubator apparatus that allows for normal neural tube closure after dissection (Crockett, 1990). Once in culture, embryos can be manipulated using conventional in vitro techniques that would not otherwise be possible if the embryos were still in utero. Embryo siblings can be collected at various time points to study different aspects of neurulation, occurring from E7-7.5 (neural plate formation, just prior to the initiation of neurulation) to E9.5-10 (at the conclusion of cranial fold and caudal neuropore closure, Kaufman, 1992). In this protocol, we demonstrate our method for dissecting embryos at timepoints that are optimal for the study of cranial neurulation. Embryos will be dissected at E8.5 (approx. 10-12 somities), after the initiation of neural tube closure but prior to embryo turning and cranial neural fold closure, and maintained in culture till E10 (26-28 somities), when cranial neurulation should be complete.

摘要

基因小鼠模型是研究哺乳动物神经管闭合的重要工具(Gray & Ross,2009;Ross,2010)。然而,子宫内小鼠胚胎的研究受到限制,因为我们无法在不受母体代谢对感兴趣试剂影响的情况下直接对胚胎进行药理学操作。无论是使用小分子、重组蛋白还是小干扰RNA,通过饮食或注射将这些物质递送至母体,都会使这些不稳定化合物受到多种身体防御机制的作用,从而可能阻止它们到达胚胎。对全胚胎培养物的研究可用于区分母体和内在胎儿对发育的影响。在此,我们介绍一种在滚筒培养箱装置中使用高度富集培养基培养小鼠胚胎的方法,该方法可使胚胎在解剖后实现正常的神经管闭合(Crockett,1990)。一旦进入培养,就可以使用传统的体外技术对胚胎进行操作,而如果胚胎仍在子宫内则无法进行这些操作。可以在不同时间点收集胚胎同胞,以研究神经胚形成的不同方面,其发生时间从E7 - 7.5(神经板形成,恰好在神经胚形成开始之前)到E9.5 - 10(在颅褶和尾神经孔闭合结束时,Kaufman,1992)。在本方案中,我们展示了在对颅神经胚形成研究最适宜的时间点解剖胚胎的方法。胚胎将在E8.5(约10 - 12体节)进行解剖,此时神经管闭合已开始,但在胚胎翻转和颅神经褶闭合之前,然后在培养中维持至E10(26 - 28体节),此时颅神经胚形成应已完成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验