Suppr超能文献

基于运动的简单算法预测 LQTS 先证者亲属基因检测的推导和验证。

Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands.

机构信息

University of Western Ontario, London, Canada.

出版信息

Circulation. 2011 Nov 15;124(20):2187-94. doi: 10.1161/CIRCULATIONAHA.111.028258. Epub 2011 Oct 31.

Abstract

BACKGROUND

Genetic testing can diagnose long-QT syndrome (LQTS) in asymptomatic relatives of patients with an identified mutation; however, it is costly and subject to availability. The accuracy of a simple algorithm that incorporates resting and exercise ECG parameters for screening LQTS in asymptomatic relatives was evaluated, with genetic testing as the gold standard.

METHODS AND RESULTS

Asymptomatic first-degree relatives of genetically characterized probands were recruited from 5 centers. QT intervals were measured at rest, during exercise, and during recovery. Receiver operating characteristics were used to establish optimal cutoffs. An algorithm for identifying LQTS carriers was developed in a derivation cohort and validated in an independent cohort. The derivation cohort consisted of 69 relatives (28 with LQT1, 20 with LQT2, and 21 noncarriers). Mean age was 35±18 years, and resting corrected QT interval (QTc) was 466±39 ms. Abnormal resting QTc (females ≥480 ms; males ≥470 ms) was 100% specific for gene carrier status, but was observed in only 48% of patients; however, mutations were observed in 68% and 42% of patients with a borderline or normal resting QTc, respectively. Among these patients, 4-minute recovery QTc ≥445 ms correctly restratified 22 of 25 patients as having LQTS and 19 of 21 patients as being noncarriers. The combination of resting and 4-minute recovery QTc in a screening algorithm yielded a sensitivity of 0.94 and specificity of 0.90 for detecting LQTS carriers. When applied to the validation cohort (n=152; 58 with LQT1, 61 with LQT2, and 33 noncarriers; QTc=443±47 ms), sensitivity was 0.92 and specificity was 0.82.

CONCLUSIONS

A simple algorithm that incorporates resting and exercise-recovery QTc is useful in identifying LQTS in asymptomatic relatives.

摘要

背景

遗传检测可诊断已确诊突变患者无症状亲属的长 QT 综合征(LQTS);然而,这种方法费用高且受可用性限制。本研究旨在评估一种简单算法,该算法结合静息和运动心电图参数来筛查无症状亲属中的 LQTS,以基因检测为金标准。

方法和结果

从 5 个中心招募了已确诊先证者的无症状一级亲属。在静息、运动和恢复期间测量 QT 间期。使用受试者工作特征(ROC)来确定最佳截断值。在推导队列中开发了一种用于识别 LQTS 携带者的算法,并在独立队列中进行了验证。推导队列由 69 名亲属(28 名 LQT1、20 名 LQT2 和 21 名非携带者)组成。平均年龄为 35±18 岁,静息校正 QT 间期(QTc)为 466±39ms。异常静息 QTc(女性≥480ms;男性≥470ms)对基因携带者状态具有 100%的特异性,但仅在 48%的患者中观察到;然而,在静息 QTc 边界值或正常的患者中,分别观察到 68%和 42%的患者存在突变。在这些患者中,4 分钟恢复 QTc≥445ms 正确地将 25 名患者中的 22 名重新分类为 LQTS,21 名患者中的 19 名分类为非携带者。在筛查算法中结合静息和 4 分钟恢复 QTc,其检测 LQTS 携带者的敏感性为 0.94,特异性为 0.90。当应用于验证队列(n=152;58 名 LQT1、61 名 LQT2 和 33 名非携带者;QTc=443±47ms)时,敏感性为 0.92,特异性为 0.82。

结论

一种简单的算法,结合静息和运动-恢复 QTc,可用于识别无症状亲属中的 LQTS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验