Joint Unit Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, Lyon, France.
PLoS One. 2011;6(10):e24828. doi: 10.1371/journal.pone.0024828. Epub 2011 Oct 17.
The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals.
METHODOLOGY/PRINCIPAL FINDINGS: Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients.
In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.
基因表达数据分析表明,许多基因在表达谱上具有相似性,提示存在一定的协同调控。在此,我们研究了基因表达数据中的共表达模式,并提出了一种基于相关性的研究方法来对个体进行分层。
方法/主要发现:使用类风湿关节炎(RA)患者的血液,我们使用 Affymetrix 微阵列技术对全血中的基因表达谱进行了研究。通过双聚类方法分析共表达基因,然后对相关双聚类进行基因本体分析。以 I 型干扰素(IFN)途径为例,从 102 名 RA 患者中开发了一种分类算法,并扩展到 10 名系统性红斑狼疮(SLE)患者和 100 名健康志愿者,以进一步对个体进行特征描述。我们开发了一种基于相关性的算法,称为基于生物学特征的分类算法(CABS),这是一种替代其他专门关注表达水平的方法。该算法应用于 35 个 IFN 相关基因的表达,表明 IFN 特征在 RA、SLE 和健康对照者之间呈现出异质性表达,这可以反映出全局 IFN 特征激活水平。此外,在抗 TNF 治疗过程中监测 IFN 相关基因,鉴定出 RA 患者中诱导的 I 型 IFN 基因活性的变化。
总之,我们提出了一种分析具有共同表达模式和生物学功能的基因的原始方法,表明生物特征的激活水平可以通过其整体相关性状态来表征。