Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
Neurobiol Dis. 2012 Feb;45(2):723-32. doi: 10.1016/j.nbd.2011.10.018. Epub 2011 Oct 25.
Cell-cell junctions and junctions between cells and extracellular matrix are essential for maintenance of the structural and functional integrity of the cochlea, and are also a major target of acoustic trauma. While morphological assessments have revealed adhesion dysfunction in noise-traumatized cochleae, the molecular mechanisms responsible for adhesion disruption are not clear. Here, we screened the transcriptional expression of 49 adhesion-related genes in normal rat cochleae and measured the expression changes in the early phases of cochlear pathogenesis after acoustic trauma. We found that genes from four adhesion families, including the immunoglobulin superfamily and the integrin, cadherin, and selectin families, are expressed in the normal cochlea. Exposure to an intense noise at 120dB sound pressure level (SPL) for 2h caused site-specific changes in expression levels in the apical and the basal sections of the sensory epithelium. Expression changes that occurred in the cochlear sensory epithelium were biphasic, with early upregulation at 2h post-noise exposure and subsequent downregulation at 1day post-exposure. Importantly, the altered expression level of seven genes (Sgce, Sell, Itga5, Itgal, Selp, Cntn1 and Col5a1) is related to the level of threshold shift of the auditory brainstem response (ABR), an index reflecting functional change in the cochlea. Notably, the genes showing expression changes exhibited diverse constitutive expression levels and belong to multiple adhesion gene families. The finding of expression changes in multiple families of adhesion genes in a temporal fashion (2h vs. 1day) and a spatial fashion (the apical and the basal sensory epithelia as well as the lateral wall tissue) suggests that acoustic overstimulation provokes a complex response in adhesion genes, which likely involves multiple adhesion-related signaling pathways.
细胞-细胞连接和细胞与细胞外基质的连接对于维持耳蜗的结构和功能完整性至关重要,也是声创伤的主要靶点。虽然形态学评估显示,噪声损伤的耳蜗中存在黏附功能障碍,但导致黏附破坏的分子机制尚不清楚。在这里,我们筛选了 49 个与黏附相关的基因在正常大鼠耳蜗中的转录表达,并测量了声创伤后耳蜗发病早期的表达变化。我们发现,包括免疫球蛋白超家族和整合素、钙黏蛋白和选择素家族在内的四个黏附家族的基因在正常耳蜗中表达。在 120dB 声压级(SPL)的强烈噪声下暴露 2 小时,导致感觉上皮的顶部和底部区域的表达水平发生特定部位的变化。在耳蜗感觉上皮中发生的表达变化是双相的,在噪声暴露后 2 小时出现早期上调,随后在暴露后 1 天出现下调。重要的是,七个基因(Sgce、Sell、Itga5、Itgal、Selp、Cntn1 和 Col5a1)的表达变化水平与听觉脑干反应(ABR)的阈值移位相关,ABR 是反映耳蜗功能变化的指标。值得注意的是,表现出表达变化的基因具有不同的组成型表达水平,并且属于多个黏附基因家族。多个黏附基因家族在时间上(2 小时与 1 天)和空间上(顶部和底部感觉上皮以及侧墙组织)发生表达变化的发现表明,声过度刺激会引发黏附基因的复杂反应,这可能涉及多个与黏附相关的信号通路。