Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, USA.
PLoS One. 2013;8(3):e58471. doi: 10.1371/journal.pone.0058471. Epub 2013 Mar 5.
Acoustic trauma, one of the leading causes of sensorineural hearing loss, induces sensory hair cell damage in the cochlea. Identifying the molecular mechanisms involved in regulating sensory hair cell death is critical towards developing effective treatments for preventing hair cell damage. Recently, microRNAs (miRNAs) have been shown to participate in the regulatory mechanisms of inner ear development and homeostasis. However, their involvement in cochlear sensory cell degeneration following acoustic trauma is unknown. Here, we profiled the expression pattern of miRNAs in the cochlear sensory epithelium, defined miRNA responses to acoustic overstimulation, and explored potential mRNA targets of miRNAs that may be responsible for the stress responses of the cochlea. Expression analysis of miRNAs in the cochlear sensory epithelium revealed constitutive expression of 176 miRNAs, many of which have not been previously reported in cochlear tissue. Exposure to intense noise caused significant threshold shift and apoptotic activity in the cochleae. Gene expression analysis of noise-traumatized cochleae revealed time-dependent transcriptional changes in the expression of miRNAs. Target prediction analysis revealed potential target genes of the significantly downregulated miRNAs, many of which had cell death- and apoptosis-related functions. Verification of the predicted targets revealed a significant upregulation of Taok1, a target of miRNA-183. Moreover, inhibition of miR-183 with morpholino antisense oligos in cochlear organotypic cultures revealed a negative correlation between the expression levels of miR-183 and Taok1, suggesting the presence of a miR-183/Taok1 target pair. Together, miRNA profiling as well as the target analysis and validation suggest the involvement of miRNAs in the regulation of the degenerative process of the cochlea following acoustic overstimulation. The miR-183/Taok1 target pair is likely to play a role in this regulatory process.
声创伤是感音神经性听力损失的主要原因之一,它会导致耳蜗中的感觉毛细胞损伤。确定参与调节感觉毛细胞死亡的分子机制对于开发有效治疗方法以防止毛细胞损伤至关重要。最近,microRNAs(miRNAs)已被证明参与内耳发育和稳态的调节机制。然而,它们在声创伤后耳蜗感觉细胞退化中的作用尚不清楚。在这里,我们对耳蜗感觉上皮中的 miRNA 表达模式进行了分析,确定了 miRNA 对声过度刺激的反应,并探讨了可能负责耳蜗应激反应的 miRNA 的潜在 mRNA 靶标。对耳蜗感觉上皮中 miRNAs 的表达分析显示,176 种 miRNAs 持续表达,其中许多 miRNA 以前未在耳蜗组织中报道过。强烈噪声暴露会导致耳蜗出现显著的阈值移位和凋亡活性。对噪声创伤耳蜗的基因表达分析显示,miRNA 的表达随时间发生了依赖性的转录变化。靶基因预测分析揭示了显著下调的 miRNAs 的潜在靶基因,其中许多基因与细胞死亡和凋亡相关。预测靶标的验证显示,Taok1(miRNA-183 的靶标)的表达显著上调。此外,在耳蜗器官型培养物中用 miRNA 反义寡核苷酸抑制 miR-183 显示,miR-183 和 Taok1 的表达水平之间存在负相关,表明存在 miR-183/Taok1 靶标对。总之,miRNA 分析以及靶标分析和验证表明,miRNAs 参与了声过度刺激后耳蜗退行性过程的调节。miR-183/Taok1 靶标对可能在这个调节过程中发挥作用。