Department of Biology, University of Bari, Bari, Italy.
Heredity (Edinb). 2012 Jan;108(1):59-67. doi: 10.1038/hdy.2011.101. Epub 2011 Nov 2.
The evolutionary history of chromosomes can be tracked by the comparative hybridization of large panels of bacterial artificial chromosome clones. This approach has disclosed an unprecedented phenomenon: 'centromere repositioning', that is, the movement of the centromere along the chromosome without marker order variation. The occurrence of evolutionary new centromeres (ENCs) is relatively frequent. In macaque, for instance, 9 out of 20 autosomal centromeres are evolutionarily new; in donkey at least 5 such neocentromeres originated after divergence from the zebra, in less than 1 million years. Recently, orangutan chromosome 9, considered to be heterozygous for a complex rearrangement, was discovered to be an ENC. In humans, in addition to neocentromeres that arise in acentric fragments and result in clinical phenotypes, 8 centromere-repositioning events have been reported. These 'real-time' repositioned centromere-seeding events provide clues to ENC birth and progression. In the present paper, we provide a review of the centromere repositioning. We add new data on the population genetics of the ENC of the orangutan, and describe for the first time an ENC on the X chromosome of squirrel monkeys. Next-generation sequencing technologies have started an unprecedented, flourishing period of rapid whole-genome sequencing. In this context, it is worth noting that these technologies, uncoupled from cytogenetics, would miss all the biological data on evolutionary centromere repositioning. Therefore, we can anticipate that classical and molecular cytogenetics will continue to have a crucial role in the identification of centromere movements. Indeed, all ENCs and human neocentromeres were found following classical and molecular cytogenetic investigations.
染色体的进化历史可以通过比较大的细菌人工染色体克隆面板杂交来追踪。这种方法揭示了一个前所未有的现象:“着丝粒重定位”,即着丝粒沿着染色体移动,而没有标记顺序的变化。进化中新的着丝粒(ENC)的发生相对频繁。例如,在猕猴中,20 条常染色体中有 9 条是进化中新的;在驴中,至少有 5 个这样的新着丝粒是在与斑马分化后不到 100 万年起源的;最近,被认为是复杂重排杂合子的猩猩染色体 9 被发现是一个 ENC。在人类中,除了由于无着丝粒片段而产生的新着丝粒导致临床表型外,还报道了 8 个着丝粒重定位事件。这些“实时”重定位的着丝粒播种事件为 ENC 的产生和发展提供了线索。在本文中,我们对着丝粒重定位进行了综述。我们提供了关于猩猩 ENC 的群体遗传学的新数据,并首次描述了松鼠猴 X 染色体上的一个 ENC。下一代测序技术已经开始了一个前所未有的、蓬勃发展的快速全基因组测序时期。在这种情况下,值得注意的是,这些技术与细胞遗传学脱钩,将错过所有关于进化着丝粒重定位的生物学数据。因此,我们可以预料,经典和分子细胞遗传学将继续在鉴定着丝粒运动方面发挥关键作用。事实上,所有的 ENC 和人类新着丝粒都是在经典和分子细胞遗传学研究之后发现的。