Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, CNRS Unité Mixte de Recherche Institut de Recherche pour le Développement 6236, Faculté de Médecine, Université de la Méditerranée, 13385 Marseille cedex 5, France.
J Biol Chem. 2011 Dec 23;286(51):43701-43709. doi: 10.1074/jbc.M111.309096. Epub 2011 Nov 1.
Collagens, the most abundant proteins in animals, are modified by hydroxylation of proline and lysine residues and by glycosylation of hydroxylysine. Dedicated prolyl hydroxylase, lysyl hydroxylase, and collagen glycosyltransferase enzymes localized in the endoplasmic reticulum mediate these modifications prior to the formation of the collagen triple helix. Whereas collagen-like proteins have been described in some fungi, bacteria, and viruses, the post-translational machinery modifying collagens has never been described outside of animals. We demonstrate that the L230 open reading frame of the giant virus Acanthamoeba polyphaga mimivirus encodes an enzyme that has distinct lysyl hydroxylase and collagen glycosyltransferase domains. We show that mimivirus L230 is capable of hydroxylating lysine and glycosylating the resulting hydroxylysine residues in a native mimivirus collagen acceptor substrate. Whereas in animals from sponges to humans the transfer of galactose to hydroxylysine in collagen is conserved, the mimivirus L230 enzyme transfers glucose to hydroxylysine, thereby defining a novel type of collagen glycosylation in nature. The presence of hydroxylysine in mimivirus proteins was confirmed by amino acid analysis of mimivirus recovered from A. polyphaga cultures. This work shows for the first time that collagen post-translational modifications are not confined to the domains of life. The utilization of glucose instead of the galactose found throughout animals as well as a bifunctional enzyme rather than two separate enzymes may represent a parallel evolutionary track in collagen biology. These results suggest that giant viruses may have contributed to the evolution of collagen biology.
胶原蛋白是动物中最丰富的蛋白质,其脯氨酸和赖氨酸残基发生羟化和羟赖氨酸发生糖基化修饰。定位于内质网中的脯氨酰羟化酶、赖氨酸羟化酶和胶原糖基转移酶专门对这些修饰进行催化,然后再形成胶原三螺旋。尽管在一些真菌、细菌和病毒中已经描述了胶原样蛋白,但在动物之外,从未描述过修饰胶原的翻译后修饰机制。我们证明,大型病毒 Acanthamoeba polyphaga mimivirus 的 L230 开放阅读框编码一种酶,该酶具有独特的赖氨酸羟化酶和胶原糖基转移酶结构域。我们表明, mimivirus L230 能够羟化赖氨酸,并在天然 mimivirus 胶原受体底物中糖基化由此产生的羟赖氨酸残基。虽然在从海绵到人类的动物中,胶原中羟赖氨酸的半乳糖转移是保守的,但 mimivirus L230 酶将葡萄糖转移到羟赖氨酸上,从而在自然界中定义了一种新型的胶原糖基化。通过对从 A. polyphaga 培养物中回收的 mimivirus 的氨基酸分析,证实了 mimivirus 蛋白中存在羟赖氨酸。这项工作首次表明,胶原的翻译后修饰并不仅限于生命领域。利用葡萄糖而不是在动物中发现的半乳糖,以及使用双功能酶而不是两个独立的酶,可能代表胶原生物学中的平行进化轨迹。这些结果表明,巨型病毒可能对胶原生物学的进化做出了贡献。