Chaugule Jui Shivaji, Xu Yujia
The Graduate Center, Program of Biochemistry, The City University of New York, 365 Fifth Ave., New York, New York 10016, United States.
Department of Chemistry, Hunter College of the City University of New York, 695 Park Ave., New York, New York 10065, United States.
Biomacromolecules. 2025 Jul 14;26(7):4040-4050. doi: 10.1021/acs.biomac.5c00026. Epub 2025 Jun 23.
The susceptibility to matrix metalloproteinases (MMPs) directly affects the functions and applications of collagen biomaterials. In this work, we demonstrated that this property can be manipulated in collagen-mimetic biomaterials created using designed peptides. We developed three fibril-forming mini-recombinant collagens (MRCs) using bacterial expression and designed genes that model a 108-residue section of human type III collagen surrounding the MMP-1 recognition site. Notably, the MRCs can form a native-like fibrillar structure representing the natural substrate of MMP-1. By altering the number of digestion sites or mutating the residues at the canonical scissile bond of MMP-1, the sensitivity to proteolysis of the MRCs varied by two orders of magnitude despite having homologous amino acid sequences and a similar fibrillar structure, and regardless of whether the peptides were in the triple helix conformation or as fibrils. These MRCs can be a versatile collagen alternative for regenerative medicine offering a regulated turnover rate catering to specific applications.
对基质金属蛋白酶(MMPs)的敏感性直接影响胶原生物材料的功能和应用。在这项工作中,我们证明了这种特性可以在使用设计肽创建的模拟胶原生物材料中得到控制。我们利用细菌表达和设计基因开发了三种形成原纤维的微型重组胶原蛋白(MRCs),这些基因模拟了人III型胶原蛋白围绕MMP-1识别位点的108个残基片段。值得注意的是,MRCs可以形成类似天然的原纤维结构,代表MMP-1的天然底物。通过改变消化位点的数量或突变MMP-1典型可裂解键处的残基,尽管MRCs具有同源氨基酸序列和相似的原纤维结构,且无论肽处于三螺旋构象还是原纤维状态,其对蛋白水解的敏感性仍相差两个数量级。这些MRCs可以成为再生医学中一种通用的胶原蛋白替代品,提供适合特定应用的可控周转率。