Suppr超能文献

基于含β-环糊精嵌段共聚物和聚(β-苄基-L-天冬氨酸)通过主客体络合作用形成的核壳结构纳米组装体。

Core-shell structured nanoassemblies based on β-cyclodextrin containing block copolymer and poly(β-benzyl L-aspartate) via host-guest complexation.

作者信息

Zhang Jianxiang, Ma Peter X

机构信息

Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Polymer (Guildf). 2011 Sep 29;52(21):4928-4937. doi: 10.1016/j.polymer.2011.08.030.

Abstract

Double hydrophilic copolymers (PEG-b-PCDs) with one PEG block and another block containing β-cyclodextrin (β-CD) units were synthesized by macromolecular substitution reaction. Via a dialysis procedure, complex assemblies with a core-shell structure were prepared using PEG-b-PCDs in the presence of a hydrophobic homopolymer poly(β-benzyl L-aspartate) (PBLA). The hydrophobic PBLA resided preferably in the cores of assemblies, while the extending PEG chains acted as the outer shell. Host-guest interaction between β-CD and hydrophobic benzyl group was found to mediate the formation of the assemblies, where PEG-b-PCD and PBLA served as the host and guest macromolecules, respectively. The particle size of the assemblies could be modulated by the composition of the host PEG-b-PCD copolymer. The molecular weight of the guest polymer also had a significant effect on the size of the assemblies. The assemblies prepared from the host and guest polymer pair were stable during a long-term storage. These assemblies could also be successfully reconstituted after freeze-drying. The assemblies may therefore be used as novel nanocarriers for the delivery of hydrophobic drugs.

摘要

通过大分子取代反应合成了具有一个聚乙二醇(PEG)嵌段和另一个含有β-环糊精(β-CD)单元嵌段的双亲水共聚物(PEG-b-PCD)。通过透析程序,在疏水性均聚物聚(β-苄基-L-天冬氨酸)(PBLA)存在下,使用PEG-b-PCD制备了具有核壳结构的复合聚集体。疏水性PBLA优选位于聚集体的核心中,而伸展的PEG链充当外壳。发现β-CD与疏水性苄基之间的主客体相互作用介导了聚集体的形成,其中PEG-b-PCD和PBLA分别充当主体和客体大分子。聚集体的粒径可以通过主体PEG-b-PCD共聚物的组成来调节。客体聚合物的分子量对聚集体的尺寸也有显著影响。由主体和客体聚合物对制备的聚集体在长期储存期间是稳定的。这些聚集体在冷冻干燥后也可以成功重构。因此,这些聚集体可用作疏水性药物递送的新型纳米载体。

相似文献

2
Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery.
Colloids Surf B Biointerfaces. 2017 Dec 1;160:364-371. doi: 10.1016/j.colsurfb.2017.09.047. Epub 2017 Sep 22.
5
Synthesis of β-cyclodextrin containing copolymer via "click" chemistry and its self-assembly in the presence of guest compounds.
Macromol Rapid Commun. 2012 Apr 23;33(8):664-71. doi: 10.1002/marc.201100814. Epub 2012 Feb 9.
6
Host-guest interaction and structural ordering in polymeric nanoassemblies: Influence of molecular design.
Int J Pharm. 2017 Oct 15;531(2):433-443. doi: 10.1016/j.ijpharm.2017.02.061. Epub 2017 Feb 24.
7
Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host-Guest Pseudo-Block Copolymers.
ACS Appl Bio Mater. 2021 Jun 21;4(6):5057-5070. doi: 10.1021/acsabm.1c00306. Epub 2021 Jun 1.
8
Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery.
Biomacromolecules. 2020 Apr 13;21(4):1516-1527. doi: 10.1021/acs.biomac.0c00077. Epub 2020 Mar 20.

引用本文的文献

1
Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective.
Adv Drug Deliv Rev. 2013 Aug;65(9):1215-33. doi: 10.1016/j.addr.2013.05.001. Epub 2013 May 11.
2
Synthesis of β-cyclodextrin containing copolymer via "click" chemistry and its self-assembly in the presence of guest compounds.
Macromol Rapid Commun. 2012 Apr 23;33(8):664-71. doi: 10.1002/marc.201100814. Epub 2012 Feb 9.

本文引用的文献

3
Current directions in core-shell nanoparticle design.
Nanoscale. 2010 Jun;2(6):829-43. doi: 10.1039/c0nr00028k. Epub 2010 Mar 29.
5
Nanomedicine in the diagnosis and therapy of neurodegenerative disorders.
Prog Polym Sci. 2007;32(8-9):1054-1082. doi: 10.1016/j.progpolymsci.2007.05.014.
7
Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes.
J Control Release. 2010 Apr 2;143(1):2-12. doi: 10.1016/j.jconrel.2009.11.012. Epub 2009 Nov 17.
8
9
A supramolecular approach for preparation of size-controlled nanoparticles.
Angew Chem Int Ed Engl. 2009;48(24):4344-8. doi: 10.1002/anie.200900063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验