Turnbull D, Rodricks J V, Brett S M
Environ Corporation, Arlington, VA 22203.
Environ Health Perspect. 1990 Jun;86:159-71. doi: 10.1289/ehp.9086159.
The available epidemiologic data provide equivocal evidence that 1,3-butadiene is carcinogenic in humans; some available studies suggest that the lymphopoietic system is a target, but there are inconsistencies among studies in the types of tumors associated with 1,3-butadiene exposure, and there is no evidence of a relationship between length of exposure and cancer risk, as one might expect if there was a true causal relationship between 1,3-butadiene exposure and cancer risk. The available chronic animal studies, however, show an increase in tumor incidence associated with exposure to high concentrations of 1,3-butadiene. In addition to the general uncertainty of the relevance of animal data to humans, there are several additional reasons why the National Toxicology Program's mouse study may not be appropriate for assessing possible human risks. These include: a) the possible involvement of a species-specific tumor virus (MuLV) in the response in mice; b) apparent differences between mice and humans in the rate of metabolism of 1,3-butadiene to reactive epoxides that may be proximate carcinogens; c) use of high dose levels that caused excess early mortality; and d) exposure of animals to 1,3-butadiene for only about half their lifetime. While recognizing the uncertainty in using the available animal data for risk assessment, we have performed low-dose extrapolation of the data to examine the implications of the data if humans were as sensitive as rats or mice to 1,3-butadiene, and to examine how the predictions of the animal data compare to that observed in the epidemiologic studies. With the mouse data, because the study was of less than lifetime duration, we have used the Hartley-Sielken time-to-tumor model to permit estimation of lifetime risk from the less than lifetime exposure of the study. With the rat data, we have used three plausible models for assessing low-dose risk: the multistage model, the Weibull model, and the Mantel-Bryan probit model. With both the rat and mouse data, we used information on how much 1,3-butadiene is retained by animals exposed to various concentrations of the chemical. This improves the accuracy of the low-dose extrapolation. When extrapolated to low-dose levels, mice appear to be at greater risk (by a factor of 5-fold to 40-fold) than rats. Some of this difference (a factor 3-fold to 5-fold) may be due to the faster rate of metabolism of 1,3-butadiene to, and higher blood levels of, epoxide derivatives in mice than in rats.(ABSTRACT TRUNCATED AT 400 WORDS)
现有流行病学数据提供的证据模棱两可,表明1,3 - 丁二烯对人类具有致癌性;一些现有研究表明淋巴造血系统是一个靶点,但与1,3 - 丁二烯暴露相关的肿瘤类型研究之间存在不一致之处,而且没有证据表明暴露时长与癌症风险之间存在关联,而如果1,3 - 丁二烯暴露与癌症风险之间存在真正的因果关系,人们可能会预期存在这种关联。然而,现有的慢性动物研究表明,高浓度暴露于1,3 - 丁二烯会使肿瘤发病率增加。除了动物数据与人类相关性普遍存在不确定性之外,国家毒理学计划的小鼠研究可能不适用于评估可能的人类风险还有几个其他原因。这些原因包括:a)一种物种特异性肿瘤病毒(MuLV)可能参与小鼠的反应;b)小鼠和人类在将1,3 - 丁二烯代谢为可能是近致癌物的反应性环氧化物的速率上存在明显差异;c)使用的高剂量水平导致早期死亡率过高;d)动物仅在其大约一半的寿命期间暴露于1,3 - 丁二烯。虽然认识到使用现有动物数据进行风险评估存在不确定性,但我们对数据进行了低剂量外推,以研究如果人类对1,3 - 丁二烯的敏感性与大鼠或小鼠相同,数据的含义,并研究动物数据的预测与流行病学研究中观察到的情况相比如何。对于小鼠数据,由于该研究持续时间不足一生,我们使用了哈特利 - 西尔肯肿瘤发生时间模型,以便根据研究中不足一生的暴露情况估计终生风险。对于大鼠数据,我们使用了三种合理的模型来评估低剂量风险:多阶段模型、威布尔模型和曼特尔 - 布莱恩概率单位模型。对于大鼠和小鼠数据,我们都使用了关于暴露于不同浓度该化学物质的动物体内1,3 - 丁二烯保留量的信息。这提高了低剂量外推的准确性。外推到低剂量水平时,小鼠似乎比大鼠面临更大的风险(高5倍至40倍)。这种差异中的一些(3倍至5倍)可能是由于小鼠中1,3 - 丁二烯代谢为环氧化物衍生物的速率比大鼠快,且血液中环氧化物衍生物水平更高。(摘要截断于400字)