Schweizer R, Merz K, Schlosser S, Spanholtz T, Contaldo C, Stein J V, Enzmann V, Giovanoli P, Erni D, Plock J A
Department of Clinical Researc, University of Bern, Bern, Switzerland.
Eur Surg Res. 2011;47(4):222-30. doi: 10.1159/000333088. Epub 2011 Nov 2.
With the understanding of angiogenesis and arteriogenesis, new theories about the orchestration of these processes have emerged. The aim of this study was to develop an in vivo model that enables visualization of vascular regenerating mechanisms by intravital microscopy techniques in collateral arteriolar flap vascularity.
A dorsal skin flap (15 × 30 mm) was created in mice and fixed into a skinfold chamber to allow for assessment of morphology and microhemodynamics by intravital fluorescence microscopy (IVFM). Laser scanning confocal microscopy (LSCM) was utilized for three-dimensional reconstruction of the microvascular architecture.
Flap tpO(2) was 5.3 ± 0.9 versus 30.5 ± 1.2 mm Hg in controls (p < 0.01). The collateral arterioles in the flap tissue were dilated (29.4 ± 5.3 μm; p < 0.01 vs. controls) and lengthened in a tortuous manner (tortuosity index 1.00 on day 1 vs. 1.35± 0.05 on day 12; p < 0.01). Functional capillary density was increased from 121.00 ± 25 to 170 ± 30 cm/cm(2) (day 12; p < 0.01) as a result of angiogenesis. Morphological evidence of angiogenesis on capillary level and vascular remodeling on arteriolar level could be demonstrated by IVFM and LSCM.
Present intravital microscopy techniques offer unique opportunities to study structural changes and hemodynamic effects of vascular regeneration in this extended axial pattern flap model.
随着对血管生成和动脉生成的认识不断深入,关于这些过程协调作用的新理论应运而生。本研究的目的是建立一种体内模型,通过活体显微镜技术在侧支小动脉皮瓣血管生成中实现血管再生机制的可视化。
在小鼠身上制作一个背部皮瓣(15×30毫米),并将其固定在皮肤褶皱室中,以便通过活体荧光显微镜(IVFM)评估形态和微循环动力学。利用激光扫描共聚焦显微镜(LSCM)对微血管结构进行三维重建。
皮瓣组织的tpO(2)为5.3±0.9毫米汞柱,而对照组为30.5±1.2毫米汞柱(p<0.01)。皮瓣组织中的侧支小动脉扩张(29.4±5.3微米;与对照组相比,p<0.01),并以曲折的方式延长(第1天的曲折指数为1.00,而第12天为1.35±0.05;p<0.01)。由于血管生成,功能性毛细血管密度从121.00±25增加到170±30厘米/平方厘米(第12天;p<0.01)。通过IVFM和LSCM可以证明毛细血管水平上血管生成的形态学证据以及小动脉水平上的血管重塑。
目前的活体显微镜技术为研究这种延长轴型皮瓣模型中血管再生的结构变化和血流动力学效应提供了独特的机会。