Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.
Nature. 2011 Nov 6;480(7378):547-51. doi: 10.1038/nature10648.
Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinson's disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinson's disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinson's disease.
人类多能干细胞(PSCs)是一种很有前途的细胞来源,可以应用于再生医学。已经实现了将 PSCs 定向分化为专门的细胞,如脊髓运动神经元或中脑多巴胺(DA)神经元。然而,PSCs 在细胞治疗中的有效应用却落后了。尽管来自小鼠 PSC 的 DA 神经元在帕金森病模型中显示出了疗效,但来自人类 PSC 的 DA 神经元在体内表现通常较差。此外,PSCs 还存在相当大的安全性问题,因为它们有可能形成畸胎瘤或神经过度生长。在这里,我们提出了一种新的基于基板的策略,用于衍生能够有效地在体内植入的人类 DA 神经元,这表明过去的失败是由于不完全的特异性,而不是细胞的特定脆弱性。中脑神经基板前体细胞是在 PSCs 暴露于小分子 sonic hedgehog(SHH)和经典 WNT 信号激活剂 11 天后获得的。可植入的中脑 DA 神经元在第 25 天获得,并可在体外维持数月。广泛的分子分析、生化和电生理数据定义了发育进展,并证实了 PSC 衍生的中脑 DA 神经元的身份。在使用三种宿主物种的帕金森病模型中证明了体内存活和功能。在 6-羟多巴胺损伤的小鼠和大鼠中进行长期植入,证明了从人类胚胎干细胞(ES 细胞)衍生的中脑 DA 神经元具有强大的存活能力,完全恢复了安非他命诱导的旋转行为,并改善了前肢使用和运动不能的测试。最后,通过移植到帕金森病猴中证明了可扩展性。在三种动物模型中,DA 神经元的良好存活、功能和无神经过度生长表明,在帕金森病的细胞治疗开发方面具有广阔的前景。