Suppr超能文献

利用明场振幅对比数据对受感染巨噬细胞进行自动分析和分类。

Automated analysis and classification of infected macrophages using bright-field amplitude contrast data.

作者信息

Adiga Umesh, Taylor Debbie, Bell Brian, Ponomareva Larissa, Kanzlemar Stephen, Kramer Ryan, Saldanha Roland, Nelson Sandra, Lamkin Thomas J

机构信息

UES, Inc., Dayton, OH, USA.

出版信息

J Biomol Screen. 2012 Mar;17(3):401-8. doi: 10.1177/1087057111426902. Epub 2011 Nov 4.

Abstract

This article presents a methodology for acquisition and analysis of bright-field amplitude contrast image data in high-throughput screening (HTS) for the measurement of cell density, cell viability, and classification of individual cells into phenotypic classes. We present a robust image analysis pipeline, where the original data are subjected to image standardization, image enhancement, and segmentation by region growing. This work develops new imaging and analysis techniques for cell analysis in HTS and successfully addresses a particular need for direct measurement of cell density and other features without using dyes.

摘要

本文介绍了一种在高通量筛选(HTS)中采集和分析明场振幅对比图像数据的方法,用于测量细胞密度、细胞活力以及将单个细胞分类到表型类别中。我们提出了一个强大的图像分析流程,其中原始数据要经过图像标准化、图像增强以及通过区域生长进行分割。这项工作开发了用于HTS中细胞分析的新成像和分析技术,并成功满足了在不使用染料的情况下直接测量细胞密度和其他特征的特定需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验