Suppr超能文献

用于立克次氏体疫苗开发的全基因组筛选及抗原鉴定

Genome-wide screening and identification of antigens for rickettsial vaccine development.

作者信息

Palmer Guy H, Brown Wendy C, Noh Susan M, Brayton Kelly A

机构信息

Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.

出版信息

FEMS Immunol Med Microbiol. 2012 Feb;64(1):115-9. doi: 10.1111/j.1574-695X.2011.00878.x.

Abstract

The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of microbial genome sequences coupled to proteomic and bioinformatic analysis. Critical to this approach is in vivo testing in the context of a natural host–pathogen relationship, one that includes genetic diversity in the host as well as among pathogen strains. We aggregate the results of three independent genome-wide screens using in vivo immunization and protection against Anaplasma marginale as a model for discovery of vaccine antigens for rickettsial pathogens. In silico analysis identified 62 outer membrane proteins (Omp) from the 949 predicted proteins in the A. marginale genome. These 62 Omps were reduced to 10 vaccine candidates by two independent genome-wide screens using IgG2 from vaccinates protected from challenge following vaccination with outer membranes (screen 1) or bacterial surface complexes (screen 2). Omps with broadly conserved epitopes were identified by immunization with a live heterologous vaccine, A. marginale ssp. centrale (screen 3), reducing the candidates to three. The genome-wide screens identified Omps that have orthologs broadly conserved among rickettsial pathogens, highlighted the importance of identifying immunologically subdominant antigens, and supported the use of reverse vaccinology approaches in vaccine development for rickettsial diseases.

摘要

通过微生物基因组序列结合蛋白质组学和生物信息学分析,全基因组筛选用于疫苗开发的免疫原的能力得到了显著提高。这种方法的关键在于在自然宿主 - 病原体关系的背景下进行体内测试,这种关系包括宿主以及病原体菌株中的遗传多样性。我们汇总了三项独立的全基因组筛选结果,以体内免疫和针对边缘无形体的保护作为发现立克次体病原体疫苗抗原的模型。计算机分析从边缘无形体基因组中的949个预测蛋白中鉴定出62种外膜蛋白(Omp)。通过两项独立的全基因组筛选,使用接种外膜(筛选1)或细菌表面复合物(筛选2)后受到保护免受攻击的接种动物的IgG2,将这62种Omp减少到10种疫苗候选物。通过用活的异源疫苗边缘无形体亚种中央亚种进行免疫(筛选3),鉴定出具有广泛保守表位的Omp,将候选物减少到3种。全基因组筛选鉴定出在立克次体病原体中具有广泛保守直系同源物的Omp,突出了鉴定免疫亚优势抗原的重要性,并支持在立克次体疾病疫苗开发中使用反向疫苗学方法。

相似文献

1
Genome-wide screening and identification of antigens for rickettsial vaccine development.
FEMS Immunol Med Microbiol. 2012 Feb;64(1):115-9. doi: 10.1111/j.1574-695X.2011.00878.x.
6
Multistrain genome analysis identifies candidate vaccine antigens of Anaplasma marginale.
Vaccine. 2011 Jul 12;29(31):4923-32. doi: 10.1016/j.vaccine.2011.04.131. Epub 2011 May 17.
7
High-throughput identification of T-lymphocyte antigens from Anaplasma marginale expressed using in vitro transcription and translation.
J Immunol Methods. 2008 Mar 20;332(1-2):129-41. doi: 10.1016/j.jim.2007.12.018. Epub 2008 Jan 28.
8
Immunogenicity of Anaplasma marginale type IV secretion system proteins in a protective outer membrane vaccine.
Infect Immun. 2007 May;75(5):2333-42. doi: 10.1128/IAI.00061-07. Epub 2007 Mar 5.
10
Anaplasma marginale outer membrane protein vaccine candidates are conserved in North American and South African strains.
Ticks Tick Borne Dis. 2020 Jul;11(4):101444. doi: 10.1016/j.ttbdis.2020.101444. Epub 2020 Apr 18.

引用本文的文献

1
2
Targeted mutagenesis in Anaplasma marginale to define virulence and vaccine development against bovine anaplasmosis.
PLoS Pathog. 2022 May 16;18(5):e1010540. doi: 10.1371/journal.ppat.1010540. eCollection 2022 May.
3
New Insights Into Mitochondrial Dysfunction at Disease Susceptibility Loci in the Development of Type 2 Diabetes.
Front Endocrinol (Lausanne). 2021 Aug 11;12:694893. doi: 10.3389/fendo.2021.694893. eCollection 2021.
5
10
Anaplasma marginale: Diversity, Virulence, and Vaccine Landscape through a Genomics Approach.
Biomed Res Int. 2016;2016:9032085. doi: 10.1155/2016/9032085. Epub 2016 Aug 17.

本文引用的文献

1
Multistrain genome analysis identifies candidate vaccine antigens of Anaplasma marginale.
Vaccine. 2011 Jul 12;29(31):4923-32. doi: 10.1016/j.vaccine.2011.04.131. Epub 2011 May 17.
3
Reverse vaccinology: developing vaccines in the era of genomics.
Immunity. 2010 Oct 29;33(4):530-41. doi: 10.1016/j.immuni.2010.09.017.
4
Complete genome sequence of Anaplasma marginale subsp. centrale.
J Bacteriol. 2010 Jan;192(1):379-80. doi: 10.1128/JB.01330-09.
6
Conservation in the face of diversity: multistrain analysis of an intracellular bacterium.
BMC Genomics. 2009 Jan 11;10:16. doi: 10.1186/1471-2164-10-16.
7
The use of nonhuman primate models in HIV vaccine development.
PLoS Med. 2008 Aug 12;5(8):e173. doi: 10.1371/journal.pmed.0050173.
9
Superinfection as a driver of genomic diversification in antigenically variant pathogens.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2123-7. doi: 10.1073/pnas.0710333105. Epub 2008 Feb 5.
10
High-throughput identification of T-lymphocyte antigens from Anaplasma marginale expressed using in vitro transcription and translation.
J Immunol Methods. 2008 Mar 20;332(1-2):129-41. doi: 10.1016/j.jim.2007.12.018. Epub 2008 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验