Yu Haochen, Wedlich-Söldner Roland
Institute of Biochemistry; ETH Zürich; Zurich, Switzerland.
Bioarchitecture. 2011 Jul;1(4):165-168. doi: 10.4161/bioa.1.4.17314. Epub 2011 Jul 1.
The actin cytoskeleton plays essential roles in cell polarization and cell morphogenesis of the budding yeast Saccharomyces cerevisiae. Yeast cells utilize formin-generated actin cables as tracks for polarized transport, which forms the basis for a positive feedback loop driving Cdc42-dependent cell polarization. Previous studies on cable organization mostly focused on polarized actin cables in budded cells and their role as relatively static tracks for myosin-dependent organelle transport. Using quantitative live cell imaging, we have recently characterized the dynamics of cortical actin cables throughout the yeast cell cycle. Surprisingly, randomly oriented actin cables in G(1) cells exhibited the highest level of dynamics, while cable dynamics was markedly slowed down upon cell polarization. We further demonstrated that the rapid dynamics of randomly oriented cables were driven by the formin Bni1 and Myosin V. Our data suggested a precise spatio-temporal regulation of the two yeast formins, as well as an unexpected mechanism of actin cable rearrangement through myosins. Here we discuss the immediate significance of these findings, which illustrates the importance of generating randomness for cellular organization.
肌动蛋白细胞骨架在出芽酵母酿酒酵母的细胞极化和细胞形态发生中起着至关重要的作用。酵母细胞利用formin生成的肌动蛋白电缆作为极化运输的轨道,这构成了驱动Cdc42依赖性细胞极化的正反馈回路的基础。先前关于电缆组织的研究主要集中在芽殖细胞中的极化肌动蛋白电缆及其作为肌球蛋白依赖性细胞器运输相对静态轨道的作用。通过定量活细胞成像,我们最近表征了整个酵母细胞周期中皮质肌动蛋白电缆的动力学。令人惊讶的是,G(1)期细胞中随机取向的肌动蛋白电缆表现出最高水平的动力学,而细胞极化后电缆动力学明显减慢。我们进一步证明,随机取向电缆的快速动力学是由formin Bni1和肌球蛋白V驱动的。我们的数据表明,两种酵母formin存在精确的时空调节,以及通过肌球蛋白进行肌动蛋白电缆重排的意外机制。在这里,我们讨论这些发现的直接意义,这说明了为细胞组织产生随机性的重要性。