Department of BioMolecular Science and Engineering, University of California, Santa Barbara, California, United States of America.
PLoS Comput Biol. 2013;9(7):e1003139. doi: 10.1371/journal.pcbi.1003139. Epub 2013 Jul 25.
Although cell polarity is an essential feature of living cells, it is far from being well-understood. Using a combination of computational modeling and biological experiments we closely examine an important prototype of cell polarity: the pheromone-induced formation of the yeast polarisome. Focusing on the role of noise and spatial heterogeneity, we develop and investigate two mechanistic spatial models of polarisome formation, one deterministic and the other stochastic, and compare the contrasting predictions of these two models against experimental phenotypes of wild-type and mutant cells. We find that the stochastic model can more robustly reproduce two fundamental characteristics observed in wild-type cells: a highly polarized phenotype via a mechanism that we refer to as spatial stochastic amplification, and the ability of the polarisome to track a moving pheromone input. Moreover, we find that only the stochastic model can simultaneously reproduce these characteristics of the wild-type phenotype and the multi-polarisome phenotype of a deletion mutant of the scaffolding protein Spa2. Significantly, our analysis also demonstrates that higher levels of stochastic noise results in increased robustness of polarization to parameter variation. Furthermore, our work suggests a novel role for a polarisome protein in the stabilization of actin cables. These findings elucidate the intricate role of spatial stochastic effects in cell polarity, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological function.
尽管细胞极性是活细胞的一个基本特征,但它远未被很好地理解。我们使用计算建模和生物实验相结合的方法,仔细研究了细胞极性的一个重要原型:即信息素诱导酵母极性体的形成。我们专注于噪声和空间异质性的作用,开发并研究了两种极性体形成的机制空间模型,一种是确定性的,另一种是随机的,并将这两种模型的对比预测与野生型和突变细胞的实验表型进行比较。我们发现,随机模型可以更稳健地再现野生型细胞中观察到的两个基本特征:通过我们称之为空间随机放大的机制产生高度极化的表型,以及极性体跟踪移动信息素输入的能力。此外,我们发现只有随机模型才能同时再现野生型表型和支架蛋白 Spa2 缺失突变体的多极性体表型的这些特征。重要的是,我们的分析还表明,较高水平的随机噪声会增加极化对参数变化的稳健性。此外,我们的工作还表明,极性体蛋白在稳定肌动蛋白纤维方面具有新的作用。这些发现阐明了空间随机效应在细胞极性中的复杂作用,为噪声和空间异质性相结合以实现稳健的生物学功能的细胞模型提供了支持。