Department of Biology, Georgia State University Atlanta, GA, USA.
Front Neural Circuits. 2013 Oct 22;7:169. doi: 10.3389/fncir.2013.00169. eCollection 2013.
Neuromodulators alter network output and have the potential to destabilize a circuit. The mechanisms maintaining stability in the face of neuromodulation are not well described. Using the pyloric network in the crustacean stomatogastric nervous system, we show that dopamine (DA) does not simply alter circuit output, but activates a closed loop in which DA-induced alterations in circuit output consequently drive a change in an ionic conductance to preserve a conductance ratio and its activity correlate. DA acted at low affinity type 1 receptors (D1Rs) to induce an immediate modulatory decrease in the transient potassium current (IA) of a pyloric neuron. This, in turn, advanced the activity phase of that component neuron, which disrupted its network function and thereby destabilized the circuit. DA simultaneously acted at high affinity D1Rs on the same neuron to confer activity-dependence upon the hyperpolarization activated current (Ih) such that the DA-induced changes in activity subsequently reduced Ih. This DA-enabled, activity-dependent, intrinsic plasticity exactly compensated for the modulatory decrease in IA to restore the IA:Ih ratio and neuronal activity phase, thereby closing an open loop created by the modulator. Activation of closed loops to preserve conductance ratios may represent a fundamental operating principle neuromodulatory systems use to ensure stability in their target networks.
神经调质会改变网络输出,并有可能使电路失去稳定。面对神经调质,维持稳定性的机制尚未得到很好的描述。我们使用甲壳类动物口胃神经系统中的肠神经系统中的起搏网络,展示了多巴胺(DA)不会简单地改变电路输出,而是激活了一个闭环,其中 DA 诱导的电路输出变化随后会导致离子电导发生变化,以维持电导比及其活动相关。DA 通过低亲和力 1 型受体(D1R)发挥作用,诱导一个起搏神经元的瞬时钾电流(IA)立即发生调制性降低。这反过来又提前了该成分神经元的活动相,从而破坏了其网络功能,从而使电路失去稳定。DA 同时在同一神经元上的高亲和力 D1R 上发挥作用,使超极化激活电流(Ih)具有活性依赖性,从而使 DA 诱导的活性变化随后降低 Ih。这种 DA 启用的、活性依赖性的内在可塑性完全补偿了 IA 的调制性降低,以恢复 IA:Ih 比值和神经元活动相,从而关闭由调制器产生的开环。激活闭环以保持电导比可能代表神经调质系统用来确保其靶网络稳定性的基本操作原则。