Institute for Toxicology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
PLoS One. 2011;6(11):e27183. doi: 10.1371/journal.pone.0027183. Epub 2011 Nov 2.
First line chemotherapeutics for brain tumors (malignant gliomas) are alkylating agents such as temozolomide and nimustine. Despite growing knowledge of how these agents work, patients suffering from this malignancy still face a dismal prognosis. Alkylating agents target DNA, forming the killing lesion O(6)-alkylguanine, which is converted into DNA double-strand breaks (DSBs) that trigger apoptosis. Here we assessed whether inhibiting repair of DSBs by homologous recombination (HR) or non-homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioma cells to alkylating agents. For down-regulation of HR in glioma cells, we used an interference RNA (iRNA) approach targeting Rad51 and BRCA2, and for NHEJ we employed the DNA-PK inhibitor NU7026. We also assessed whether inhibition of poly(ADP)ribosyltransferase (PARP) by olaparib would enhance the killing effect. The data show that knockdown of Rad51 or BRCA2 greatly sensitizes cells to DSBs and the induction of cell death following temozolomide and nimustine (ACNU). It did not sensitize to ionizing radiation (IR). The expression of O(6)-methylguanine-DNA methyltransferase (MGMT) abolished all these effects, indicating that O(6)-alkylguanine induced by these drugs is the primary lesion responsible for the formation of DSBs and increased sensitivity of glioma cells following knockdown of Rad51 and BRCA2. Inhibition of DNA-PK only slightly sensitized to temozolomide whereas a significant effect was observed with IR. A triple strategy including siRNA and the PARP inhibitor olaparib further improved the killing effect of temozolomide. The data provides evidence that down-regulation of Rad51 or BRCA2 is a reasonable strategy for sensitizing glioma cells to killing by O(6)-alkylating anti-cancer drugs. The data also provide proof of principle that a triple strategy involving down-regulation of HR, PARP inhibition and MGMT depletion may greatly enhance the therapeutic effect of temozolomide.
脑肿瘤(恶性神经胶质瘤)的一线化疗药物是烷化剂,如替莫唑胺和尼莫司汀。尽管人们对这些药物的作用机制有了更多的了解,但患有这种恶性肿瘤的患者的预后仍然很悲观。烷化剂靶向 DNA,形成杀伤性损伤 O(6)-烷基鸟嘌呤,进而转化为引发细胞凋亡的 DNA 双链断裂(DSB)。在这里,我们评估了抑制同源重组(HR)或非同源末端连接(NHEJ)修复 DSB 是否是使神经胶质瘤细胞对烷化剂敏感的合理策略。为了下调神经胶质瘤细胞中的 HR,我们使用了靶向 Rad51 和 BRCA2 的干扰 RNA(iRNA)方法,并用 DNA-PK 抑制剂 NU7026 抑制 NHEJ。我们还评估了 PARP 抑制剂奥拉帕利是否能增强杀伤作用。结果表明,Rad51 或 BRCA2 的敲低大大增强了细胞对 DSB 的敏感性,并增强了替莫唑胺和尼莫司汀(ACNU)诱导的细胞死亡。但对电离辐射(IR)没有敏感性。O(6)-甲基鸟嘌呤-DNA 甲基转移酶(MGMT)的表达消除了所有这些效应,表明这些药物诱导的 O(6)-烷基鸟嘌呤是导致 DSB 形成和 Rad51 和 BRCA2 敲低后神经胶质瘤细胞敏感性增加的主要损伤。DNA-PK 的抑制仅略微增加了对替莫唑胺的敏感性,而对 IR 则有显著影响。包括 siRNA 和 PARP 抑制剂奥拉帕利的三重策略进一步提高了替莫唑胺的杀伤效果。这些数据为下调 Rad51 或 BRCA2 作为使神经胶质瘤细胞对 O(6)-烷化抗癌药物杀伤敏感的合理策略提供了证据。这些数据还为涉及 HR 下调、PARP 抑制和 MGMT 耗竭的三重策略可能大大增强替莫唑胺治疗效果的原理提供了证据。