Suppr超能文献

Wnt 信号在骨细胞生物学和骨疾病中的最新研究进展。

Update on Wnt signaling in bone cell biology and bone disease.

机构信息

Department of Medicine/Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

出版信息

Gene. 2012 Jan 15;492(1):1-18. doi: 10.1016/j.gene.2011.10.044. Epub 2011 Nov 3.

Abstract

For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.

摘要

十多年来,Wnt 信号通路一直是骨骼生物学实验室研究的重点,因为它们在骨骼发育、骨量维持以及再生医学的治疗潜力方面具有重要作用。很明显,即使是 Wnt 信号通路的强度、幅度、位置和持续时间的微小改变,也会影响骨骼发育以及整个生命周期中的骨重塑、再生和修复。在这里,我们回顾了 Wnt/Lrp5 信号如何调节成骨细胞和破骨细胞的最新进展和差异,介绍了在骨骼发育中具有重要作用的 Wnt 信号通路的新成员,讨论了 Wnt 信号在破骨细胞生成中的作用等新兴领域,并总结了围绕抑制 Wnt 通路拮抗剂(如骨硬化蛋白、DKK1 和 SFRP1)的基础研究向临床治疗和诊断转化所取得的进展。重点强调了大量的小鼠模型和全基因组关联研究,这些研究揭示了 Wnt 通路成分在骨骼发育和疾病中的必要性和关键作用。

相似文献

1
Update on Wnt signaling in bone cell biology and bone disease.
Gene. 2012 Jan 15;492(1):1-18. doi: 10.1016/j.gene.2011.10.044. Epub 2011 Nov 3.
2
Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone.
J Bone Miner Res. 2009 Feb;24(2):171-8. doi: 10.1359/jbmr.081235.
3
Translating insights from development into regenerative medicine: the function of Wnts in bone biology.
Semin Cell Dev Biol. 2008 Oct;19(5):434-43. doi: 10.1016/j.semcdb.2008.09.002. Epub 2008 Sep 7.
4
Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system.
J Mol Endocrinol. 2015 Oct;55(2):R23-36. doi: 10.1530/JME-15-0067. Epub 2015 Aug 25.
5
Regulation of bone mass by Wnt signaling.
J Clin Invest. 2006 May;116(5):1202-9. doi: 10.1172/JCI28551.
6
Wnt signaling and the regulation of bone mass.
Curr Osteoporos Rep. 2007 Jun;5(2):73-80. doi: 10.1007/s11914-007-0006-0.
7
Regulation of Wnt/β-catenin signaling within and from osteocytes.
Bone. 2013 Jun;54(2):244-9. doi: 10.1016/j.bone.2013.02.022. Epub 2013 Mar 5.
8
The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases.
Semin Arthritis Rheum. 2013 Oct;43(2):220-40. doi: 10.1016/j.semarthrit.2013.01.004. Epub 2013 Feb 21.
9
Wnt signaling in bone metabolism.
J Bone Miner Metab. 2009;27(3):265-71. doi: 10.1007/s00774-009-0064-8. Epub 2009 Mar 31.
10
Wnt signaling in bone development and disease: making stronger bone with Wnts.
Cold Spring Harb Perspect Biol. 2012 Dec 1;4(12):a007997. doi: 10.1101/cshperspect.a007997.

引用本文的文献

2
Regulation of Skeletogenic Pathways by m6A RNA Modification: A Comprehensive Review.
Calcif Tissue Int. 2025 Apr 3;116(1):58. doi: 10.1007/s00223-025-01367-9.
3
LGR4 (GPR48): The Emerging Inter-Bridge in Osteoimmunology.
Biomedicines. 2025 Mar 2;13(3):607. doi: 10.3390/biomedicines13030607.
4
Wnt/β-catenin signaling pathway: an attractive potential therapeutic target in osteosarcoma.
Front Oncol. 2025 Feb 14;14:1456959. doi: 10.3389/fonc.2024.1456959. eCollection 2024.
7
Association between serum Klotho and the prevalence of osteoarthritis: A cross-sectional study from NHANES 2007-2016.
PLoS One. 2024 Nov 18;19(11):e0312562. doi: 10.1371/journal.pone.0312562. eCollection 2024.
8
deletion increases osteoblast maturation and bone mass accrual in adult male mice.
JBMR Plus. 2024 Aug 4;8(10):ziae108. doi: 10.1093/jbmrpl/ziae108. eCollection 2024 Oct.
9
Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review.
Front Genet. 2024 Jul 2;15:1429844. doi: 10.3389/fgene.2024.1429844. eCollection 2024.
10
The Role of Aryl Hydrocarbon Receptor in Bone Biology.
Int J Tryptophan Res. 2024 May 15;17:11786469241246674. doi: 10.1177/11786469241246674. eCollection 2024.

本文引用的文献

1
Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin.
Mol Cell Biol. 2011 Dec;31(23):4706-19. doi: 10.1128/MCB.05980-11. Epub 2011 Aug 29.
2
Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1.
Nat Struct Mol Biol. 2011 Jul 10;18(8):886-93. doi: 10.1038/nsmb.2081.
3
Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling.
Nature. 2011 Jul 4;476(7360):293-7. doi: 10.1038/nature10337.
5
R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11452-7. doi: 10.1073/pnas.1106083108. Epub 2011 Jun 21.
6
Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells.
Blood. 2011 Sep 1;118(9):2420-9. doi: 10.1182/blood-2010-09-305664. Epub 2011 Jun 7.
7
LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways.
Bone. 2011 Sep;49(3):343-8. doi: 10.1016/j.bone.2011.05.018. Epub 2011 May 27.
8
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis.
Osteoarthritis Cartilage. 2011 Jul;19(7):874-85. doi: 10.1016/j.joca.2011.04.014. Epub 2011 May 12.
9
Lrp5 functions in bone to regulate bone mass.
Nat Med. 2011 Jun;17(6):684-91. doi: 10.1038/nm.2388. Epub 2011 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验