Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18954-9. doi: 10.1073/pnas.1104808108. Epub 2011 Nov 11.
Many functionally essential ionizable groups are buried in the hydrophobic interior of proteins. A systematic study of Lys, Asp, and Glu residues at 25 internal positions in staphylococcal nuclease showed that their pK(a) values can be highly anomalous, some shifted by as many as 5.7 pH units relative to normal pK(a) values in water. Here we show that, in contrast, Arg residues at the same internal positions exhibit no detectable shifts in pK(a); they are all charged at pH ≤ 10. Twenty-three of these 25 variants with Arg are folded at both pH 7 and 10. The mean decrease in thermodynamic stability from substitution with Arg was 6.2 kcal/mol at this pH, comparable to that for substitution with Lys, Asp, or Glu at pH 7. The physical basis behind the remarkable ability of Arg residues to remain protonated in environments otherwise incompatible with charges is suggested by crystal structures of three variants showing how the guanidinium moiety of the Arg side chain is effectively neutralized through multiple hydrogen bonds to protein polar atoms and to site-bound water molecules. The length of the Arg side chain, and slight deformations of the protein, facilitate placement of the guanidinium moieties near polar groups or bulk water. This unique capacity of Arg side chains to retain their charge in dehydrated environments likely contributes toward the important functional roles of internal Arg residues in situations where a charge is needed in the interior of a protein, in a lipid bilayer, or in similarly hydrophobic environments.
许多功能必需的可离子化基团都埋藏在蛋白质的疏水内部。对枯草溶菌素中 25 个内部位置的 Lys、Asp 和 Glu 残基进行的系统研究表明,它们的 pK(a) 值可能非常异常,有些相对于水中的正常 pK(a) 值偏移多达 5.7 pH 单位。在这里,我们表明,相比之下,在相同内部位置的 Arg 残基没有检测到 pK(a) 的变化;它们在 pH ≤ 10 时都带电荷。这 25 个变体中有 23 个具有 Arg,在 pH 7 和 10 下都折叠。在该 pH 下,用 Arg 取代的热力学稳定性平均降低了 6.2 kcal/mol,与在 pH 7 下用 Lys、Asp 或 Glu 取代的稳定性相当。Arg 残基在与电荷不兼容的环境中保持质子化的非凡能力背后的物理基础,通过三个变体的晶体结构显示出来,这些变体展示了 Arg 侧链的胍基部分如何通过与蛋白质极性原子和结合在位置上的水分子的多个氢键有效地被中和。Arg 侧链的长度和蛋白质的轻微变形,有利于胍基部分靠近极性基团或大量水分子。Arg 侧链在脱水环境中保持其电荷的这种独特能力可能有助于内部 Arg 残基在蛋白质内部、脂质双层或类似疏水环境中需要电荷的情况下发挥重要的功能作用。