Suppr超能文献

蛋白质疏水内部的电荷。

Charges in the hydrophobic interior of proteins.

机构信息

Department of Biophysics, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16096-100. doi: 10.1073/pnas.1004213107. Epub 2010 Aug 26.

Abstract

Charges are inherently incompatible with hydrophobic environments. Presumably for this reason, ionizable residues are usually excluded from the hydrophobic interior of proteins and are found instead at the surface, where they can interact with bulk water. Paradoxically, ionizable groups buried in the hydrophobic interior of proteins play essential roles, especially in biological energy transduction. To examine the unusual properties of internal ionizable groups we measured the pK(a) of glutamic acid residues at 25 internal positions in a stable form of staphylococcal nuclease. Two of 25 Glu residues titrated with normal pK(a) near 4.5; the other 23 titrated with elevated pK(a) values ranging from 5.2-9.4, with an average value of 7.7. Trp fluorescence and far-UV circular dichroism were used to monitor the effects of internal charges on conformation. These data demonstrate that although charges buried in proteins are indeed destabilizing, charged side chains can be buried readily in the hydrophobic core of stable proteins without the need for specialized structural adaptations to stabilize them, and without inducing any major conformational reorganization. The apparent dielectric effect experienced by the internal charges is considerably higher than the low dielectric constants of hydrophobic matter used to represent the protein interior in electrostatic continuum models of proteins. The high thermodynamic stability required for proteins to withstand the presence of buried charges suggests a pathway for the evolution of enzymes, and it underscores the need to mind thermodynamic stability in any strategy for engineering novel or altered enzymatic active sites in proteins.

摘要

电荷本质上与疏水环境不相容。大概出于这个原因,可离子化残基通常被排除在蛋白质的疏水内部之外,而是位于表面,在那里它们可以与体相水相互作用。矛盾的是,埋藏在蛋白质疏水内部的可离子化基团起着至关重要的作用,尤其是在生物能量转导中。为了研究内部可离子化基团的特殊性质,我们测量了稳定形式的葡萄球菌核酸酶中 25 个内部位置的谷氨酸残基的 pK(a)。25 个 Glu 残基中有两个的滴定 pK(a)接近 4.5;其余 23 个的滴定 pK(a)值较高,范围从 5.2-9.4,平均为 7.7。色氨酸荧光和远紫外圆二色性用于监测内部电荷对构象的影响。这些数据表明,尽管埋藏在蛋白质中的电荷确实会使蛋白质不稳定,但带电荷的侧链可以很容易地埋藏在稳定蛋白质的疏水核心中,而不需要专门的结构适应来稳定它们,也不会引起任何主要的构象重组。内部电荷所经历的表观介电效应明显高于用于表示蛋白质内部的低介电常数的疏水分子。蛋白质需要高度的热力学稳定性才能承受埋藏电荷的存在,这表明了酶进化的途径,并且强调了在任何设计新型或改变蛋白质酶活性位点的策略中都需要考虑热力学稳定性。

相似文献

1
Charges in the hydrophobic interior of proteins.蛋白质疏水内部的电荷。
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16096-100. doi: 10.1073/pnas.1004213107. Epub 2010 Aug 26.
3
Large shifts in pKa values of lysine residues buried inside a protein.赖氨酸残基在蛋白质内部的 pKa 值发生大幅变化。
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5260-5. doi: 10.1073/pnas.1010750108. Epub 2011 Mar 9.
4
High tolerance for ionizable residues in the hydrophobic interior of proteins.蛋白质疏水内部对可电离残基具有高耐受性。
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17784-8. doi: 10.1073/pnas.0805113105. Epub 2008 Nov 12.
9
Arginine residues at internal positions in a protein are always charged.蛋白质内部位置的精氨酸残基总是带电荷的。
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18954-9. doi: 10.1073/pnas.1104808108. Epub 2011 Nov 11.

引用本文的文献

5

本文引用的文献

5
High tolerance for ionizable residues in the hydrophobic interior of proteins.蛋白质疏水内部对可电离残基具有高耐受性。
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17784-8. doi: 10.1073/pnas.0805113105. Epub 2008 Nov 12.
8
How protein stability and new functions trade off.蛋白质稳定性与新功能如何权衡。
PLoS Comput Biol. 2008 Feb 29;4(2):e1000002. doi: 10.1371/journal.pcbi.1000002.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验