Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
Nano Lett. 2011 Dec 14;11(12):5173-8. doi: 10.1021/nl202337a. Epub 2011 Nov 23.
The highest-performing colloidal quantum dot (CQD) photovoltaics (PV) reported to date have relied on high-temperature (>500°C) annealing of electron-accepting TiO2. Room-temperature processing reduces energy payback time and manufacturing cost, enables flexible substrates, and permits tandem solar cells that integrate a small-bandgap back cell atop a low-thermal-budget larger-bandgap front cell. Here we report an electrode strategy that enables a depleted-heterojunction CQD PV device to be fabricated entirely at room temperature. We find that simply replacing the high-temperature-processed TiO2 with a sputtered version of the same material leads to poor performance due to the low mobility of the sputtered oxide. We develop instead a two-layer donor-supply electrode (DSE) in which a highly doped, shallow work function layer supplies a high density of free electrons to an ultrathin TiO2 layer via charge-transfer doping. Using the DSE we build all-room-temperature-processed small-bandgap (1 eV) colloidal quantum dot solar cells having 4% solar power conversion efficiency and high fill factor. These 1 eV bandgap cells are suitable for use as the back junction in tandem solar cells. The DSE concept, combined with control over TiO2 stoichiometry in sputtering, provides a much-needed tunable electrode to pair with quantum-size-effect CQD films.
迄今为止,性能最高的胶体量子点(CQD)光伏(PV)依赖于电子接受 TiO2 的高温(>500°C)退火。室温处理可减少能量回收期和制造成本,实现柔性衬底,并允许在低热预算的大带隙前电池上集成小带隙后电池的串联太阳能电池。在这里,我们报告了一种电极策略,该策略可使耗尽型异质结 CQD PV 器件完全在室温下制造。我们发现,仅用相同材料的溅射版本代替高温处理的 TiO2 会导致性能不佳,这是因为溅射氧化物的迁移率较低。我们转而开发了一种双层施主供应电极(DSE),其中高度掺杂、浅功函数层通过电荷转移掺杂将高密度自由电子供应给超薄 TiO2 层。使用 DSE,我们构建了所有在室温下处理的小带隙(1 eV)胶体量子点太阳能电池,其太阳能功率转换效率为 4%,填充因子较高。这些 1 eV 带隙电池适用于串联太阳能电池的后结。DSE 概念结合了溅射中对 TiO2 化学计量的控制,为与量子尺寸效应 CQD 薄膜配对提供了急需的可调谐电极。