Koleilat Ghada I, Kramer Illan J, Wong Chris T O, Thon Susanna M, Labelle André J, Hoogland Sjoerd, Sargent Edward H
Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
Sci Rep. 2013;3:2166. doi: 10.1038/srep02166.
Colloidal quantum dot photovoltaics combine low-cost solution processing with quantum size-effect tuning to match absorption to the solar spectrum. Rapid advances have led to certified solar power conversion efficiencies of over 7%. Nevertheless, these devices remain held back by a compromise in the choice of quantum dot film thickness, balancing on the one hand the need to maximize photon absorption, mandating a thicker film, and, on the other, the need for efficient carrier extraction, a consideration that limits film thickness. Here we report an architecture that breaks this compromise by folding the path of light propagating in the colloidal quantum dot solid. Using this method, we achieve a substantial increase in short-circuit current, ultimately leading to improved power conversion efficiency.
胶体量子点光伏技术将低成本溶液处理与量子尺寸效应调节相结合,使吸收与太阳光谱相匹配。快速发展已使认证的太阳能功率转换效率超过7%。然而,这些器件仍受限于量子点薄膜厚度选择上的权衡,一方面需要最大化光子吸收,这要求薄膜更厚,另一方面需要高效的载流子提取,这一考量限制了薄膜厚度。在此,我们报告一种架构,通过折叠在胶体量子点固体中传播的光的路径来打破这种权衡。使用这种方法,我们实现了短路电流的大幅增加,最终提高了功率转换效率。