Department of Chemistry-Ångström, Physical Chemistry and ‡Department of Physics and Astronomy, Molecular and Condensed Matter Physics, Uppsala University , 75120 Uppsala, Sweden.
ACS Nano. 2017 Aug 22;11(8):8478-8487. doi: 10.1021/acsnano.7b04332. Epub 2017 Aug 9.
Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.
胶体量子点 (CQD) 太阳能电池在实现高效、轻便的柔性或可穿戴电子设备能源供应方面具有很大的潜力。为了实现高效、灵活的 CQD 太阳能电池,需要在低温下处理电子传输层 (ETL),以从 CQD 固体层中提取电子,并且还需要抑制界面复合。本文报道了一种高度稳定的 MgZnO 纳米晶 (MZO-NC) 层,用于高效的柔性 PbS CQD 太阳能电池。用 MZO-NC ETL 制备的太阳能电池在玻璃和柔性塑料衬底上的功率转换效率 (PCE) 分别达到了 10.4%和 9.4%。报道的柔性 CQD 太阳能电池具有迄今为止柔性 CQD 太阳能电池的最高效率。详细的理论模拟和广泛的特性分析表明,MZO-NCs 显著增强了从 CQD 固体中提取电荷的能力,并减少了 ETL/CQD 界面处的电荷积累,抑制了电荷界面复合。这些重要的结果表明,低温处理的 MZO-NCs 非常有希望用于高效的柔性太阳能电池或其他柔性光电子器件。