Department of Pharmacology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
J Phys Chem A. 2012 Jan 19;116(2):886-98. doi: 10.1021/jp209896n. Epub 2011 Dec 12.
The unique ability of nitrone spin traps to detect and characterize transient free radicals by electron paramagnetic resonance (EPR) spectroscopy has fueled the development of new spin traps with improved properties. Among a variety of free radicals in chemical and biological systems, superoxide radical anion (O(2)(•-)) plays a critical role as a precursor to other more oxidizing species such as hydroxyl radical (HO(•)), peroxynitrite (ONOO(-)), and hypochlorous acid (HOCl), and therefore the direct detection of O(2)(•-) is important. To overcome the limitations of conventional cyclic nitrones, that is, poor reactivity with O(2)(•-), instability of the O(2)(•-) adduct, and poor cellular target specificity, synthesis of disubstituted nitrones has become attractive. Disubstituted nitrones offer advantages over the monosubstituted ones because they allow bifunctionalization of spin traps, therefore accommodating all the desired spin trap properties in one molecular design. However, because of the high number of possible disubstituted analogues as candidate, a systematic computational study is needed to find leads for the optimal spin trap design for biconjugation. In this paper, calculation of the energetics of O(2)(•-) and HO(2)(•) adduct formation from various disubstituted nitrones at PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory was performed to determine the most favorable disubstituted nitrones for this reaction. In addition, our results provided general trends of radical reactivity that is dependent upon but not exclusive to the charge densities of nitronyl-C, the position of substituents including stereoselectivities, and the presence of intramolecular H-bonding interaction. Unusually high exoergic ΔG(298K,aq)'s for O(2)(•-) and HO(2)(•) adduct formation were predicted for (3S,5S)-5-methyl-3,5-bis(methylcarbamoyl)-1-pyrroline N-oxide (11-cis) and (4S,5S)-5-dimethoxyphosphoryl-5-methyl-4-ethoxycarbonyl-1-pyrroline N-oxide (29-trans) with ΔG(298K,aq) = -3.3 and -9.4 kcal/mol, respectively, which are the most exoergic ΔG(298K,aq) observed thus far for any nitrone at the level of theory employed in this study.
氮氧自由基自旋捕获物通过电子顺磁共振(EPR)光谱检测和表征瞬态自由基的独特能力,推动了具有改进性能的新型自旋捕获物的发展。在化学和生物系统中的各种自由基中,超氧阴离子自由基(O(2)(•-))作为其他更具氧化性物质(如羟基自由基(HO(•))、过氧亚硝酸根(ONOO(-))和次氯酸(HOCl))的前体,起着至关重要的作用,因此直接检测 O(2)(•-)很重要。为了克服传统环状氮氧自由基的局限性,即与 O(2)(•-)反应性差、O(2)(•-)加合物不稳定以及细胞靶向特异性差,双取代氮氧自由基的合成变得很有吸引力。双取代氮氧自由基比单取代氮氧自由基具有优势,因为它们允许自旋捕获物的双官能化,从而在一个分子设计中容纳所有所需的自旋捕获物特性。然而,由于可能的双取代类似物作为候选物的数量众多,因此需要进行系统的计算研究,以找到用于双共轭的最佳自旋捕获物设计的线索。在本文中,在 PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d)理论水平上,对各种双取代氮氧自由基与 O(2)(•-)和 HO(2)(•-)加合物形成的能量进行了计算,以确定最有利于该反应的双取代氮氧自由基。此外,我们的结果提供了自由基反应性的一般趋势,该趋势取决于但不限于硝酰基-C 的电荷密度、取代基的位置(包括立体选择性)以及分子内氢键相互作用的存在。对于(3S,5S)-5-甲基-3,5-双(甲基氨基甲酰基)-1-吡咯啉 N-氧化物(11-顺式)和(4S,5S)-5-二甲氧基膦酰基-5-甲基-4-乙氧羰基-1-吡咯啉 N-氧化物(29-反式),预测了 O(2)(•-)和 HO(2)(•-)加合物形成的异常高的放热ΔG(298K,aq)'-3.3 和-9.4 kcal/mol,这是迄今为止在本研究中所采用的理论水平上观察到的任何氮氧自由基的最放热ΔG(298K,aq)。