Physics Division, Pakistan Institute of Science and Technology, P. O. Nilore, Islamabad 44000, Pakistan.
Molecules. 2011 Nov 16;16(11):9582-99. doi: 10.3390/molecules16119582.
Density functional theory calculations have been carried out to explore the effect of hydrogen on the oxidation of CO in relation to the preferential oxidation of CO in the presence of excess hydrogen (PROX). A range of gold surfaces have been selected including the (100), stepped (310) surfaces and diatomic rows on the (100) surface. These diatomic rows on Au(100) are very efficient in H-H bond scission. O(2) hydrogenation strongly enhances the surface-oxygen interaction and assists in scission of the O-O bond. The activation energy required to make the reaction intermediate hydroperoxy (OOH) from O(2) and H is small. However, we postulate its presence on our Au models as the result of diffusion from oxide supports to the gold surfaces. The OOH on Au in turn opens many low energy cost channels to produce H(2)O and CO(2). CO is selectively oxidized in a H(2) atmosphere due to the more favorable reaction barriers while the formation of adsorbed hydroperoxy enhances the reaction rate.
已进行密度泛函理论计算,以探讨氢对 CO 氧化的影响,以及在存在过量氢的情况下(PROX)优先氧化 CO。选择了一系列金表面,包括(100)、阶梯(310)表面和(100)表面上的双原子列。这些 Au(100)上的双原子列非常有效地断裂 H-H 键。O(2)加氢强烈增强了表面氧相互作用,并有助于 O-O 键的断裂。从 O(2)和 H 生成反应中间体过氧氢(OOH)所需的活化能很小。然而,我们假设其存在于我们的 Au 模型中,是由于从氧化物载体扩散到金表面的结果。在 Au 上的 OOH 继而打开了许多低能量成本的通道,以产生 H(2)O 和 CO(2)。由于更有利的反应势垒,CO 在 H(2)气氛中被选择性氧化,而吸附的过氧氢的形成则提高了反应速率。