Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden.
Hum Mol Genet. 2012 Mar 1;21(5):1078-89. doi: 10.1093/hmg/ddr537. Epub 2011 Nov 16.
A variety of observations support the hypothesis that deficiency of complex I [reduced nicotinamide-adenine dinucleotide (NADH):ubiquinone oxidoreductase] of the mitochondrial respiratory chain plays a role in the pathophysiology of Parkinson's disease (PD). However, recent data from a study using mice with knockout of the complex I subunit NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4) has challenged this concept as these mice show degeneration of non-dopamine neurons. In addition, primary dopamine (DA) neurons derived from such mice, reported to lack complex I activity, remain sensitive to toxins believed to act through inhibition of complex I. We tissue-specifically disrupted the Ndufs4 gene in mouse heart and found an apparent severe deficiency of complex I activity in disrupted mitochondria, whereas oxidation of substrates that result in entry of electrons at the level of complex I was only mildly reduced in intact isolated heart mitochondria. Further analyses of detergent-solubilized mitochondria showed the mutant complex I to be unstable but capable of forming supercomplexes with complex I enzyme activity. The loss of Ndufs4 thus causes only a mild complex I deficiency in vivo. We proceeded to disrupt Ndufs4 in midbrain DA neurons and found no overt neurodegeneration, no loss of striatal innervation and no symptoms of Parkinsonism in tissue-specific knockout animals. However, DA homeostasis was abnormal with impaired DA release and increased levels of DA metabolites. Furthermore, Ndufs4 DA neuron knockouts were more vulnerable to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Taken together, these findings lend in vivo support to the hypothesis that complex I deficiency can contribute to the pathophysiology of PD.
多种观察结果支持这样一种假设,即线粒体呼吸链复合体 I [还原型烟酰胺腺嘌呤二核苷酸 (NADH):泛醌氧化还原酶]的缺乏在帕金森病 (PD) 的病理生理学中起作用。然而,最近一项使用敲除复合体 I 亚单位 NADH:泛醌氧化还原酶铁硫蛋白 4 (Ndufs4) 的小鼠的研究数据挑战了这一概念,因为这些小鼠显示非多巴胺神经元退化。此外,据报道缺乏复合体 I 活性的此类小鼠来源的原代多巴胺 (DA) 神经元对被认为通过抑制复合体 I 起作用的毒素仍然敏感。我们在心脏中特异性敲除了 Ndufs4 基因,发现破坏的线粒体中复合体 I 活性明显严重缺乏,而在完整的分离心脏线粒体中,导致电子进入复合体 I 水平的底物氧化仅轻度降低。对去污剂溶解的线粒体的进一步分析表明,突变的复合体 I 不稳定,但能够与具有复合体 I 酶活性的超复合体形成。因此,Ndufs4 的缺失仅在体内导致轻微的复合体 I 缺乏。我们继续在中脑 DA 神经元中敲除 Ndufs4,未发现明显的神经退行性变、纹状体神经支配丧失或组织特异性敲除动物出现帕金森病症状。然而,DA 稳态异常,表现为 DA 释放受损和 DA 代谢物水平升高。此外,Ndufs4 DA 神经元敲除动物对神经毒素 1-甲基-4-苯基-1,2,3,6-四氢吡啶更敏感。总之,这些发现为复合体 I 缺乏可导致 PD 病理生理学的假说提供了体内支持。