Suppr超能文献

CRISPR-Cas9 筛选揭示了代谢对线粒体转录抑制的抗性。

Metabolic resistance to the inhibition of mitochondrial transcription revealed by CRISPR-Cas9 screen.

机构信息

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

University Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.

出版信息

EMBO Rep. 2022 Jan 5;23(1):e53054. doi: 10.15252/embr.202153054. Epub 2021 Nov 15.

Abstract

Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.

摘要

癌细胞依赖于线粒体来维持其增加的代谢需求,因此线粒体成为癌症治疗的可能靶点。我们最近开发了线粒体转录的小分子抑制剂(IMTs),它们可以选择性地损害线粒体基因表达。IMTs 在体外和体内具有很强的抗肿瘤特性,而不影响正常组织。由于治疗诱导的耐药性是成功癌症治疗的主要限制因素,我们研究了赋予 IMT 耐药性的机制。我们采用 CRISPR-Cas9(成簇的规律间隔的短回文重复序列-(CRISP 相关蛋白 9)全基因组筛选来确定赋予急性 IMT1 治疗耐药性的途径。属于 von Hippel-Lindau(VHL)和雷帕霉素靶蛋白复合物 1(mTORC1)途径的基因缺失导致对急性 IMT1 治疗的耐药性,并且通过化学调节证实了这些途径的相关性。我们还生成了对慢性 IMT 治疗有抗性的细胞,以了解对持续的线粒体基因表达损伤的反应。我们报告说,通过线粒体 DNA(mtDNA)表达和细胞代谢物的代偿性增加,发生了 IMT1 获得性耐药。我们发现线粒体转录因子 A(TFAM)下调和线粒体翻译抑制损害了耐药细胞的存活。鉴定出的 IMT 易感性和耐药性机制可能与不同类型的线粒体靶向治疗相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/918e/8728608/6b79e220b407/EMBR-23-e53054-g011.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验