Department of Laboratory Medicine, and 2Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden.
Hum Mol Genet. 2012 Nov 15;21(22):4827-35. doi: 10.1093/hmg/dds352. Epub 2012 Aug 21.
Mitochondrial dysfunction is implicated in aging and degenerative disorders such as Parkinson's disease (PD). Continuous fission and fusion of mitochondria shapes their morphology and is essential to maintain oxidative phosphorylation. Loss-of-function mutations in PTEN-induced kinase1 (PINK1) or Parkin cause a recessive form of PD and have been linked to altered regulation of mitochondrial dynamics. More specifically, the E3 ubiquitin ligase Parkin has been shown to directly regulate the levels of mitofusin 1 (Mfn1) and Mfn2, two homologous outer membrane large GTPases that govern mitochondrial fusion, but it is not known whether this is of relevance for disease pathophysiology. Here, we address the importance of Mfn1 and Mfn2 in midbrain dopamine (DA) neurons in vivo by characterizing mice with DA neuron-specific knockout of Mfn1 or Mfn2. We find that Mfn1 is dispensable for DA neuron survival and motor function. In contrast, Mfn2 DA neuron-specific knockouts develop a fatal phenotype with reduced weight, locomotor disturbances and death by 7 weeks of age. Mfn2 knockout DA neurons have spherical and enlarged mitochondria with abnormal cristae and impaired respiratory chain function. Parkin does not translocate to these defective mitochondria. Surprisingly, Mfn2 DA neuron-specific knockout mice have normal numbers of midbrain DA neurons, whereas there is a severe loss of DA nerve terminals in the striatum, accompanied by depletion of striatal DA levels. These results show that Mfn2, but not Mfn1, is required for axonal projections of DA neurons in vivo.
线粒体功能障碍与衰老和退行性疾病有关,如帕金森病(PD)。线粒体的持续裂变和融合塑造了它们的形态,对于维持氧化磷酸化至关重要。PTEN 诱导的激酶 1(PINK1)或 Parkin 的功能丧失突变导致隐性 PD,并与线粒体动力学的改变调节有关。更具体地说,E3 泛素连接酶 Parkin 已被证明可以直接调节融合所需的两种同源外膜大 GTP 酶线粒体融合蛋白 1(Mfn1)和 Mfn2 的水平,但尚不清楚这是否与疾病的病理生理学有关。在这里,我们通过研究中脑多巴胺(DA)神经元特异性敲除 Mfn1 或 Mfn2 的小鼠,来确定 Mfn1 和 Mfn2 在体内中脑 DA 神经元中的重要性。我们发现 Mfn1 对于 DA 神经元的存活和运动功能是可有可无的。相比之下,Mfn2 中脑 DA 神经元特异性敲除的小鼠会出现致命表型,体重减轻、运动障碍,在 7 周龄时死亡。Mfn2 敲除的 DA 神经元的线粒体呈球形和增大,嵴异常,呼吸链功能受损。Parkin 不会转位到这些有缺陷的线粒体。令人惊讶的是,Mfn2 中脑 DA 神经元特异性敲除的小鼠有正常数量的中脑 DA 神经元,而纹状体中的 DA 神经末梢严重缺失,伴有纹状体 DA 水平的耗竭。这些结果表明,Mfn2 而不是 Mfn1,是体内 DA 神经元轴突投射所必需的。