School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Korea.
ACS Nano. 2011 Dec 27;5(12):9918-26. doi: 10.1021/nn2036939. Epub 2011 Nov 29.
Electrochemical properties of redox proteins, which can cause the reversible changes in the resistance according to their redox reactions in solution, are of the fundamental and practical importance in bioelectrochemical applications. These redox properties often depend on the chemical activity of transition metal ions as cofactors within the active sites of proteins. Here, we demonstrate for the first time that the reversible resistance changes in dried protein films based on ferritin nanoparticles can be caused by the externally applied voltage as a result of charge trap/release of Fe(III)/Fe(II) redox couples. We also show that one ferritin nanoparticle of about 12 nm size can be operated as a nanoscale-memory device, and furthermore the layer-by-layer assembled protein multilayer devices can be extended to bioinspired electronics with adjustable memory performance via molecular level manipulation.
氧化还原蛋白的电化学性质在生物电化学应用中具有基础和实际重要性,因为它们可以根据其在溶液中的氧化还原反应而发生可逆的电阻变化。这些氧化还原性质通常取决于过渡金属离子在蛋白质活性位点内作为辅助因子的化学活性。在这里,我们首次证明,基于铁蛋白纳米粒子的干燥蛋白质薄膜的可逆电阻变化可以由外部施加的电压引起,这是由于 Fe(III)/Fe(II)氧化还原偶的电荷俘获/释放所致。我们还表明,约 12nm 大小的一个铁蛋白纳米粒子可以用作纳米级存储设备,并且通过分子水平的操作,通过层层组装的蛋白质多层器件可以扩展到具有可调节存储性能的仿生电子学。