Sul Young-Taeg, Kwon David H, Kang Byung-Soo, Oh Se-Jung, Johansson Carina
Department of Biomaterials, Institute for Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden.
Clin Oral Implants Res. 2013 Aug;24 Suppl A100:8-19. doi: 10.1111/j.1600-0501.2011.02355.x. Epub 2011 Nov 14.
(i) To identify and quantify an interfacial biochemical bond and the bonding strength of osseointegrated implants with bioactive titanium oxide chemistry, ATiO(x)B (A, metal cations; TiO(x) , titanium oxides/hydroxides; B, non-metal anions) and (ii) to provide quantitative evidence for the biochemical bond theory of osseointegration proposed by Sul et al. for description and explanation of why and how the implants with ATiO(x) B surface oxide chemistry may exhibit a significantly stronger bone response, in spite of the fact that the roughness values approached zero, or were equivalent to or significantly lower than those of the control implants.
We applied a newly developed biochemical bond measurement (BBM) method to model implant surfaces that were "perfectly" smooth nanotopography near-zero roughness as the constant parameter, and used the bioactive surface chemistry of titanium oxide, ATiOx B chemistry as a variable parameter in rabbit tibiae for 10 weeks. In this manner, we determined an interfacial biochemical bond and quantified its bonding strength.
The increase in biochemical bond strengths of the test implant relative to the control implant was determined to be 0.018 (±0.008) MPa (0.031 vs 0.021 MPa, n = 10) for tensile strength and 8.9 (±6.1) Ncm (33.0 vs 24.1 Ncm, n = 10) for removal torque. Tensile and removal torque show strong correlation in the Pearson test (r = 0.901, P ≤ 0.001). In addition, histomorphometric measurements including bone-to-metal-contact (BMC, P = 0.007), bone area and newly formed bone showed significant increases in the mean values for ATiO(x) B chemistry (P = 0.007, n = 10). Biochemical bond theory states that the surface oxide chemistry, ATiO(x) B must have more electrical and chemical molecular polarity that fractionally charges the surfaces denoted as δ(+) and δ(-) and leads to electrostatic and electrodynamic interactions with the bone healing cascade, eventually leading to the formation of biochemical bonding at the bone/implant interface.
The present study has provided quantitative evidence for biochemical bond theory of osseointegration of implants with bioactive surface oxide chemistry, ATiO(x) B. The theory of biochemical bonds may provide a scientific rationale pertinent to recent emerging trends and technologies for surface chemistry modifications of implants.
(i)识别并量化具有生物活性二氧化钛化学性质ATiO(x)B(A为金属阳离子;TiO(x)为氧化钛/氢氧化钛;B为非金属阴离子)的骨整合植入物的界面生化键及结合强度;(ii)为Sul等人提出的骨整合生化键理论提供定量证据,以描述和解释为何具有ATiO(x)B表面氧化层化学性质的植入物尽管粗糙度值接近零,或等同于或显著低于对照植入物,但仍可能表现出明显更强的骨反应以及其作用方式。
我们将一种新开发的生化键测量(BBM)方法应用于模拟植入物表面,该表面具有“完美”光滑的纳米拓扑结构,粗糙度接近零作为恒定参数,并将氧化钛的生物活性表面化学性质ATiOx B化学作为可变参数,在兔胫骨中进行为期10周的实验。通过这种方式,我们确定了界面生化键并量化了其结合强度。
测试植入物相对于对照植入物的生化键强度增加,拉伸强度为0.018(±0.008)MPa(0.031对0.021 MPa,n = 10),移除扭矩为8.9(±6.1)N·cm(33.0对24.1 N·cm,n = 10)。在Pearson检验中,拉伸强度和移除扭矩显示出很强的相关性(r = 0.901,P≤0.001)。此外,包括骨与金属接触(BMC,P = 0.007)、骨面积和新形成骨在内的组织形态计量学测量结果显示,ATiO(x)B化学性质的平均值有显著增加(P = 0.007,n = 10)。生化键理论指出,表面氧化层化学性质ATiO(x)B必须具有更多的电和化学分子极性,使表面带有部分正电荷δ(+)和部分负电荷δ(-),并导致与骨愈合级联反应发生静电和电动力学相互作用,最终在骨/植入物界面形成生化键。
本研究为具有生物活性表面氧化层化学性质ATiO(x)B的植入物骨整合生化键理论提供了定量证据。生化键理论可能为与植入物表面化学改性的最新趋势和技术相关的科学原理提供依据。