Center for Systems Microbiology, Department of Systems Biology, Building 301, Matematiktorvet, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Bioresour Technol. 2012 Jan;104:579-86. doi: 10.1016/j.biortech.2011.10.065. Epub 2011 Oct 28.
Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol production process, potentially improving economics and reducing waste from industrial biodiesel production.
甘油是生物柴油生产的副产品,被生物柴油生产商视为废物。本研究通过利用酵母 Pachysolen tannophilus(CBS4044)将过剩的甘油转化为乙醇,展示了利用甘油的潜力。本研究展示了一种稳健的生物工艺,不受生物柴油生产所用原材料的粗甘油批次变化的影响。氧传递速率(OTR)是乙醇生产的关键因素,较低的 OTR 对乙醇生产有积极影响。在 5%(v/v)粗甘油上的最高乙醇产量为 17.5 g/L,相当于理论产率的 56%。分阶段分批工艺实现了 28.1 g/L 的乙醇,这是迄今为止在微生物生物工艺中将甘油转化为乙醇的最高产量。本研究还考察了发酵生理学,旨在设计一种具有竞争力的生物乙醇生产工艺,从而提高经济性并减少工业生物柴油生产的废物。