Suppr超能文献

降低固体氧化物燃料电池的温度。

Lowering the temperature of solid oxide fuel cells.

机构信息

University of Maryland Energy Research Center, College Park, MD 20742, USA.

出版信息

Science. 2011 Nov 18;334(6058):935-9. doi: 10.1126/science.1204090.

Abstract

Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.

摘要

燃料电池具有独特的能力,可以克服燃烧效率限制(例如卡诺循环)。然而,燃料电池(能量转换装置)与氢气(能量载体)的结合强调了质子交换膜燃料电池作为更大的氢能经济的一部分的投资,从而将燃料电池推向未来的技术。相比之下,固体氧化物燃料电池今天能够在常规燃料(以及氢气)上运行。固体氧化物燃料电池的主要问题是工作温度高(约 800°C),以及由此产生的材料和成本限制以及操作复杂性(例如热循环)。最近的固体氧化物燃料电池研究结果表明,在 650°C 时,其功率密度高达约 2 瓦/平方厘米,并且燃料灵活,从而在当前的燃料基础设施内实现更高的效率。新开发的高导电性电解质和纳米结构电极设计为在低得多的温度(低至约 350°C)下进一步提高性能提供了途径,从而为改变我们的能量转换和存储方式提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验