Suppr超能文献

用于增强水电解中氧传输和催化剂利用的具有超高孔隙率的三层多孔传输层

Triple-Layer Porous Transport Layers with Ultra-High Porosity for Enhanced Oxygen Transport and Catalyst Utilization in Water Electrolysis.

作者信息

Park Seong Hyun, Park Young Je, Jang Seungsoo, Lee Pilyoung, Yoon Soobin, Park Young-June, Jung Chi-Young, Lee Kang Taek

机构信息

Department of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea.

Hydrogen Research and Demonstration Center, Hydrogen Energy Institute, Korea Institute of Energy Research (KIER), Jeollabuk-do, 56332, Republic of Korea.

出版信息

Nanomicro Lett. 2025 Jun 30;17(1):316. doi: 10.1007/s40820-025-01831-z.

Abstract

The commercialization of proton exchange membrane water electrolysis (PEMWE) for green hydrogen production hinges on the development of low-cost, high-performance titanium porous transport layers (PTLs). This study introduces a triple-layer Ti-PTL with a graded porous structure and a 75% ultra-high porosity backing layer, fabricated through tape casting and roll calendering. This triple-layer PTL, composed of a microporous layer, an interlayer, and a highly porous backing layer, enhances catalyst utilization, mechanical integrity, and mass transport. Digital twin technology using X-ray revealed increased contact area and triple-phase boundary at the interface with the catalyst layer, significantly improving oxygen evolution reaction kinetics. Numerical simulations demonstrated that the strategically designed porous structure of the triple-layer PTL facilitates efficient oxygen transport, mitigates oxygen accumulation, and improves reactant accessibility. Electrochemical evaluations showed improved performance, achieving 127 mV reduction in voltage at 2 A cm compared to a commercial PTL, highlighting its potential to enhance PEMWE efficiency and cost-effectiveness.

摘要

用于绿色制氢的质子交换膜水电解(PEMWE)商业化取决于低成本、高性能钛多孔传输层(PTL)的开发。本研究介绍了一种具有梯度多孔结构和75%超高孔隙率背衬层的三层钛PTL,通过流延成型和轧光工艺制备而成。这种由微孔层、中间层和高孔隙率背衬层组成的三层PTL提高了催化剂利用率、机械完整性和传质性能。利用X射线的数字孪生技术显示,与催化剂层界面处的接触面积和三相边界增加,显著改善了析氧反应动力学。数值模拟表明,三层PTL经过策略性设计的多孔结构有助于高效的氧气传输,减轻氧气积累,并提高反应物的可达性。电化学评估显示性能得到改善,与商用PTL相比,在2 A/cm²时电压降低了127 mV,突出了其提高PEMWE效率和成本效益的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a74/12209109/e93416f0391d/40820_2025_1831_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验