Suppr超能文献

基于R波和T波的心电图ST段检测挤压方法

[A squeeze approach for electrocardiogram ST-segment detection based on R-wave and T-wave].

作者信息

Song Jinzhong, Yan Hong, Li Li, Yang Xianglin

机构信息

State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011 Oct;28(5):855-9.

Abstract

ST-segment is the main clinical appearance in myocardial ischemia detection based on electrocardiogram (ECG) signals. However, it is highly sensitive to interferences (baseline wandering, postural changes, electrode interference, etc.), which cause the feature points of ECG ST-segment to be difficult to detect accurately. Currently, the common detection methods of ST-segment are: R+x and J+x, but they are affected badly by T-wave morphological variability and J point location. For these reasons, firstly we proposed a convenient and accurate approach for T-wave onset in this paper. It did not need to locate T-wave peak and was robust to baseline wandering and T-wave morphology. Secondly, we proposed a squeeze approach for ST-segment detection based on R-wave peak and T-wave onset. After the Long-Term ST database (LTST) verification, the proposed method has shown a good timeliness and robustness, and the accuracy of ST-segment detection has reached above 92%.

摘要

ST段是基于心电图(ECG)信号进行心肌缺血检测的主要临床表现。然而,它对干扰(基线漂移、体位变化、电极干扰等)高度敏感,这使得心电图ST段的特征点难以准确检测。目前,ST段的常见检测方法有:R+x和J+x,但它们受T波形态变异性和J点位置的影响很大。基于这些原因,本文首先提出了一种简便准确的T波起始点检测方法。该方法无需定位T波峰值,对基线漂移和T波形态具有鲁棒性。其次,我们提出了一种基于R波峰值和T波起始点的ST段挤压检测方法。经过长期ST数据库(LTST)验证,该方法具有良好的及时性和鲁棒性,ST段检测准确率达到92%以上。

相似文献

3
ST shape classification in ECG by constructing reference ST set.通过构建参考 ST 集对心电图中的 ST 段进行分类。
Med Eng Phys. 2010 Nov;32(9):1025-31. doi: 10.1016/j.medengphy.2010.07.003. Epub 2010 Aug 4.
7
[QRS detection based on difference method].基于差分法的QRS波检测
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Jun;25(3):502-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验