Suppr超能文献

新型体外机械生物椎间盘培养系统。

Novel ex-vivo mechanobiological intervertebral disc culture system.

机构信息

Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

J Biomech. 2012 Jan 10;45(2):382-5. doi: 10.1016/j.jbiomech.2011.10.036. Epub 2011 Nov 17.

Abstract

Intervertebral disc degeneration, a leading cause of low back pain, poses a significant socioeconomic burden with a broad array of costly treatment options. Mechanical loading is important in disease progression and treatment. Connecting mechanics and biology is critical for determining how loading parameters affect cellular response and matrix homeostasis. A novel ex-vivo experimental platform was developed to facilitate in-situ loading of rabbit functional spinal units (FSUs) with relevant biological outcome measures. The system was designed for motion outside of an incubator and validated for rigid fixation and physiologic environmental conditions. Specimen motion relative to novel fixtures was assessed using a digitizer; fixture stiffness exceeded specimen stiffness by an order of magnitude. Intradiscal pressure (IDP), measured using a fiber-optic pressure transducer, confirmed rigidity and compressive force selection. Surrounding media was controlled at 37 °C, 5% O(2)/CO(2) using a closed flow loop with an hypoxic incubator and was validated with probes in the specimen chamber. FSUs were subjected to cyclic compression (20 cycles) and four-hour creep at 1.0 MPa. Disc tissue was analyzed for cell viability using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which showed high viability (>90%) regardless of loading. Conditioned media was assayed for type-II collagen degradation fragments (CTX-II) and an aggrecan epitope (CS-846) associated with new aggrecan synthesis. CTX-II concentrations were not associated with loading, but CS-846 concentrations appeared to be increased with loading. Preservation of the full FSU allows physiologic load transmission and future multi-axis motion and identification of load-responsive proteins, thereby forming a new niche in intervertebral disc organ culture.

摘要

椎间盘退变是导致腰痛的主要原因,它带来了广泛的昂贵治疗选择,造成了重大的社会经济负担。机械负荷在疾病进展和治疗中很重要。连接力学和生物学对于确定加载参数如何影响细胞反应和基质动态平衡至关重要。本研究开发了一种新的离体实验平台,以促进具有相关生物学结果测量的兔功能性脊柱单元(FSUs)的原位加载。该系统旨在进行孵育器外的运动,并经过刚性固定和生理环境条件的验证。使用数字化仪评估标本相对于新型固定装置的运动;固定装置的刚度超过标本的刚度一个数量级。使用光纤压力传感器测量的椎间盘内压(IDP)证实了刚度和压缩力的选择。使用带有缺氧孵育器的闭路循环控制周围介质在 37°C、5%O(2)/CO(2),并通过标本腔内的探头进行验证。FSUs 经受 20 个循环的循环压缩和 4 小时 1.0 MPa 的蠕变。使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴化物(MTT)分析椎间盘组织的细胞活力,结果显示无论加载情况如何,细胞活力均很高(>90%)。分析条件培养基中二型胶原降解片段(CTX-II)和与新的聚集蛋白合成相关的聚集蛋白表位(CS-846)。CTX-II 浓度与加载无关,但 CS-846 浓度似乎随加载而增加。完整 FSUs 的保存允许进行生理负荷传递和未来的多轴运动,并鉴定负荷反应性蛋白,从而在椎间盘器官培养中形成新的研究领域。

相似文献

1
Novel ex-vivo mechanobiological intervertebral disc culture system.新型体外机械生物椎间盘培养系统。
J Biomech. 2012 Jan 10;45(2):382-5. doi: 10.1016/j.jbiomech.2011.10.036. Epub 2011 Nov 17.

引用本文的文献

7
10
Molecular mechanisms of biological aging in intervertebral discs.椎间盘生物衰老的分子机制
J Orthop Res. 2016 Aug;34(8):1289-306. doi: 10.1002/jor.23195. Epub 2016 Aug 12.

本文引用的文献

8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验