Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
Adv Exp Med Biol. 2012;733:97-114. doi: 10.1007/978-94-007-2555-3_10.
The base sequence encoded in nucleic acids yields significant structural and functional properties into the biopolymer. The resulting nucleic acid nanostructures provide the basis for the rapidly developing area of DNA nanotechnology. Advances in this field will be exemplified by discussing the following topics: (i) Hemin/G-quadruplex DNA nanostructures exhibit unique electrocatalytic, chemiluminescence and photophysical properties. Their integration with electrode surfaces or semiconductor quantum dots enables the development of new electrochemical or optical bioanalytical platforms for sensing DNA. (ii) The encoding of structural information into DNA enables the activation of autonomous replication processes that enable the ultrasensitive detection of DNA. (iii) By the appropriate design of DNA nanostructures, functional DNA machines, acting as "tweezers", "walkers" and "stepper" systems, can be tailored. (iv) The self-assembly of nucleic acid nanostructures (nanowires, strips, nanotubes) allows the programmed positioning of proteins on the DNA templates and the activation of enzyme cascades.
核酸中的碱基序列赋予生物聚合物重要的结构和功能特性。由此产生的核酸纳米结构为快速发展的 DNA 纳米技术领域提供了基础。通过讨论以下主题来说明该领域的进展:(i)血红素/G-四链体 DNA 纳米结构表现出独特的电催化、化学发光和光物理特性。它们与电极表面或半导体量子点的集成,为 DNA 的电化学或光学生物分析平台的发展提供了新的可能性。(ii)将结构信息编码到 DNA 中,可以激活自主复制过程,从而实现对 DNA 的超灵敏检测。(iii)通过适当的 DNA 纳米结构设计,可以定制作为“镊子”、“行走者”和“步进器”系统的功能 DNA 机器。(iv)核酸纳米结构(纳米线、条带、纳米管)的自组装允许在 DNA 模板上对蛋白质进行编程定位,并激活酶级联反应。