Suppr超能文献

用于高维回归的稀疏拉普拉斯收缩估计器

The Sparse Laplacian Shrinkage Estimator for High-Dimensional Regression.

作者信息

Huang Jian, Ma Shuangge, Li Hongzhe, Zhang Cun-Hui

机构信息

Department of Statistics and Actuarial Science, 241 SH University of Iowa Iowa City, Iowa 52242.

出版信息

Ann Stat. 2011;39(4):2021-2046. doi: 10.1214/11-aos897.

Abstract

We propose a new penalized method for variable selection and estimation that explicitly incorporates the correlation patterns among predictors. This method is based on a combination of the minimax concave penalty and Laplacian quadratic associated with a graph as the penalty function. We call it the sparse Laplacian shrinkage (SLS) method. The SLS uses the minimax concave penalty for encouraging sparsity and Laplacian quadratic penalty for promoting smoothness among coefficients associated with the correlated predictors. The SLS has a generalized grouping property with respect to the graph represented by the Laplacian quadratic. We show that the SLS possesses an oracle property in the sense that it is selection consistent and equal to the oracle Laplacian shrinkage estimator with high probability. This result holds in sparse, high-dimensional settings with p ≫ n under reasonable conditions. We derive a coordinate descent algorithm for computing the SLS estimates. Simulation studies are conducted to evaluate the performance of the SLS method and a real data example is used to illustrate its application.

摘要

我们提出了一种新的用于变量选择和估计的惩罚方法,该方法明确纳入了预测变量之间的相关模式。此方法基于与图相关联的极小极大凹惩罚和拉普拉斯二次型的组合作为惩罚函数。我们将其称为稀疏拉普拉斯收缩(SLS)方法。SLS使用极小极大凹惩罚来鼓励稀疏性,并使用拉普拉斯二次惩罚来促进与相关预测变量相关的系数之间的平滑性。SLS相对于由拉普拉斯二次型表示的图具有广义分组属性。我们表明,SLS具有一种神谕属性,即它在选择上是一致的,并且在高概率下等于神谕拉普拉斯收缩估计量。在合理条件下,该结果在(p\gg n)的稀疏高维设置中成立。我们推导了一种用于计算SLS估计量的坐标下降算法。进行了模拟研究以评估SLS方法的性能,并使用一个实际数据示例来说明其应用。

相似文献

7
Broken adaptive ridge regression and its asymptotic properties.折断自适应岭回归及其渐近性质。
J Multivar Anal. 2018 Nov;168:334-351. doi: 10.1016/j.jmva.2018.08.007. Epub 2018 Aug 23.
9

引用本文的文献

7
Differential Network Analysis: A Statistical Perspective.差异网络分析:统计学视角
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1508. Epub 2020 Apr 6.

本文引用的文献

7
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
9
10
A general framework for weighted gene co-expression network analysis.加权基因共表达网络分析的通用框架。
Stat Appl Genet Mol Biol. 2005;4:Article17. doi: 10.2202/1544-6115.1128. Epub 2005 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验